LBS

ROUND HEAD SCREW FOR PLATES

SCREW FOR PERFORATED PLATES

Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

STATICS

These can be calculated according to Eurocode 5 under thick steel-timber plate connections, even with thin metal elements.
Excellent shear strength values.

NEW-GENERATION WOODS

Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL.
The LBS5 version up to a length of 40 mm is approved completely without pre-drilling hole on Beech LVL.

DUCTILITY

Excellent ductility behaviour as evidenced by SEISMIC-REV cyclic tests according to EN 12512.

AC233
ESR-4645
C ϵ
ETA-11/0030

DIAMETER [mm]

LENGTH [mm]

SERVICE CLASS

ATMOSPHERIC CORROSIVITY

WOOD CORROSIVITY

MATERIAL

Zn
Electro electrogalvanized carbon steel

FIELDS DF USE

- timber based panels
- solid timber
- glulam (Glued Laminated Timber)
- CLT and LVL
- high density woods
- CODES ANDDIMENSIDNS

d_{1} [mm]	CODE	$\begin{gathered} \mathbf{L} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{b} \\ {[\mathrm{mm}]} \end{gathered}$	pcs
$\begin{gathered} 5 \\ \text { TX } 20 \end{gathered}$	LBS525	25	21	500
	LBS540	40	36	500
	LBS550	50	46	200
	LBS560	60	56	200
	LBS570	70	66	200
$\begin{gathered} 7 \\ \text { TX } 30 \end{gathered}$	LBS760	60	55	100
	LBS780	80	75	100
	LBS7100	100	95	100

- LBS HARDWODD EVD
round head screw for plates on hardwoods

| | |
| :--- | :--- | :--- | :--- |

Also available in the LBS HARDWOOD EVO version, L from 80 to 200 mm , diameter $\varnothing 5$ and $\varnothing 7 \mathrm{~mm}$, see page 244 .

GEDMETRY AND MECHANICAL CHARACTERISTICS

GEDMETRY

Nominal diameter	d_{1}	$[\mathrm{~mm}]$	5	7
Head diameter	d_{K}	$[\mathrm{~mm}]$	7,80	11,00
Thread diameter	d_{2}	$[\mathrm{~mm}]$	3,00	4,40
Underhead diameter	$d_{U K}$	$[\mathrm{~mm}]$	4,90	7,00
Head thickness	t_{1}	$[\mathrm{~mm}]$	2,40	3,50
Hole diameter on steel plate	$d_{V, \text { steel }}$	$[\mathrm{mm}]$	$5,0 \div 5,5$	$7,5 \div 8,0$
Pre-drilling hole diameter ${ }^{(1)}$	$d_{V, S}$	$[\mathrm{~mm}]$	3,0	4,0
Pre-drilling hole diameter ${ }^{(2)}$	$d_{V, H}$	$[\mathrm{~mm}]$	3,5	5,0

${ }^{(1)}$ Pre-drilling valid for softwood.
(2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANILAL PARAMETERS

Nominal diameter	$\mathrm{d}_{\mathbf{1}}$	$[\mathrm{mm}]$	$\mathbf{5}$	$\mathbf{7}$
Tensile strength	$\mathrm{f}_{\text {tens,k }}$	$[\mathrm{kN}]$	7,9	15,4
Yield moment	$M_{y, k}$	$[\mathrm{Nm}]$	5,4	14,2

			softwood (softwood)	LVL softwood (LVL softwood)	pre-drilled beech LVL (beech LVL predrilled)	LVL beech ${ }^{(3)}$ (beech LVL)
Characteristic withdrawal-resistance parameter	$f_{a x, k}$	[$\mathrm{N} / \mathrm{mm}^{2}$]	11,7	15,0	29,0	42,0
Characteristic head-pull-through parameter	$\mathrm{f}_{\text {head, }}$	[$\mathrm{N} / \mathrm{mm}^{2}$]	10,5	20,0	-	-
Associated density	ρ_{a}	[$\mathrm{kg} / \mathrm{m}^{3}$]	350	500	730	730
Calculation density	ρ_{k}	$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	≤ 440	$410 \div 550$	$590 \div 750$	$590 \div 750$

(3) Valid for $\mathrm{d}_{1}=5 \mathrm{~mm}$ and $\mathrm{l}_{\text {ef }} \leq 34 \mathrm{~mm}$

For applications with different materials please see ETA-11/0030.

MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER

〇 screws inserted WITHOUT pre-drilled hole

d_{1}	[mm]		5	7
a_{1}	[mm]	12.d.0,7	42	59
a_{2}	[mm]	5•d•0,7	18	25
$a_{3, t}$	[mm]	15.d	75	105
$a_{3, c}$	[mm]	10.d	50	70
$\mathrm{a}_{4, \mathrm{t}}$	[mm]	5.d	25	35
$\mathrm{a}_{4, \mathrm{c}}$	[mm]	5.d	25	35

(V) screws inserted WITH pre-drilled hole

$\mathbf{d}_{\mathbf{1}}$	$[\mathrm{mm}]$		$\mathbf{5}$	$\mathbf{7}$
$\mathbf{a}_{\mathbf{1}}$	$[\mathrm{mm}]$	$\mathbf{5} \cdot \mathbf{d} \cdot \mathbf{0 , 7}$	18	25
$\mathbf{a}_{\mathbf{2}}$	$[\mathrm{mm}]$	$\mathbf{3} \cdot \mathbf{d} \cdot \mathbf{0}, \mathbf{7}$	11	15
$\mathbf{a}_{3, \mathrm{t}}$	$[\mathrm{mm}]$	$\mathbf{1 2} \cdot \mathbf{d}$	60	84
$\mathbf{a}_{3, \mathbf{c}}$	$[\mathrm{~mm}]$	$\mathbf{7} \cdot \mathbf{d}$	35	49
$\mathbf{a}_{4, \mathbf{t}}$	$[\mathrm{~mm}]$	3.d	15	21
$\mathbf{a}_{4, \mathbf{c}}$	$[\mathrm{~mm}]$	3.d	15	21

d_{1}	[mm]		5	7
a_{1}	[mm]	4.d.0,7	14	20
a_{2}	[mm]	4.d.0,7	14	20
$a_{3, t}$	[mm]	7.d	35	49
$a_{3, c}$	[mm]	7.d	35	49
$\mathrm{a}_{4, \mathrm{t}}$	[mm]	7.d	35	49
$\mathrm{a}_{4, \mathrm{c}}$	[mm]	3.d	15	21

a = load-to-grain angle
$d=d_{1}=$ nominal screw diameter

$a=90^{\circ}$

$\mathbf{d}_{\mathbf{1}}$	$[\mathrm{mm}]$		$\mathbf{5}$	$\mathbf{7}$
$\mathbf{a}_{\mathbf{1}}$	$[\mathrm{mm}]$	$\mathbf{5} \cdot \mathbf{d} \cdot \mathbf{0}, \mathbf{7}$	18	25
$\mathbf{a}_{\mathbf{2}}$	$[\mathrm{mm}]$	$\mathbf{5} \cdot \mathbf{d} \cdot \mathbf{0}, \mathbf{7}$	18	25
$\mathbf{a}_{3, \mathrm{t}}$	$[\mathrm{mm}]$	$\mathbf{1 0} \cdot \mathbf{d}$	50	70
$\mathbf{a}_{3, \mathrm{c}}$	$[\mathrm{mm}]$	$\mathbf{1 0} \cdot \mathbf{d}$	50	70
$\mathbf{a}_{4, \mathrm{t}}$	$[\mathrm{mm}]$	$\mathbf{1 0} \cdot \mathbf{d}$	50	70
$\mathbf{a}_{4, \mathbf{c}}$	$[\mathrm{~mm}]$	$\mathbf{5} \cdot \mathbf{d}$	25	35

$\varepsilon=$ screw-to-grain angle

geometry			SHEAR							TENSION
			$\begin{aligned} & \text { steel-to-timber } \\ & \qquad=0^{\circ} \end{aligned}$							thread withdrawal $\varepsilon=0^{\circ}$
$\begin{gathered} \mathbf{d}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	L [mm]	b [mm]	$\mathbf{R}_{\mathrm{V}, 0, \mathrm{k}}$ [kN]							$\begin{gathered} \mathrm{R}_{\mathrm{ax}, 0, \mathrm{k}} \\ {[\mathrm{kN}]} \end{gathered}$
$\mathrm{S}_{\text {PLATE }}$			1,5 mm	$2,0 \mathrm{~mm}$	2,5 mm	$3,0 \mathrm{~mm}$	4,0 mm	5,0 mm	$6,0 \mathrm{~mm}$	-
5	25	21	0,77	0,77	0,77	0,76	0,76	0,75	0,74	0,40
	40	36	0,98	0,98	0,97	0,96	0,95	0,94	0,92	0,68
	50	46	1,15	1,15	1,14	1,13	1,12	1,10	1,09	0,87
	60	56	1,32	1,32	1,32	1,32	1,30	1,28	1,27	1,06
	70	66	1,37	1,37	1,37	1,37	1,37	1,36	1,36	1,25
$\mathrm{S}_{\text {PLATE }}$			$3,0 \mathrm{~mm}$	$4,0 \mathrm{~mm}$	5,0 mm	6,0 mm	8,0 mm	$10,0 \mathrm{~mm}$	$12,0 \mathrm{~mm}$	-
7	60	55	1,12	1,21	1,41	1,60	1,77	1,73	1,69	1,46
	80	75	1,52	1,61	1,83	2,04	2,22	2,17	2,13	1,99
	100	95	1,91	1,99	2,17	2,35	2,53	2,52	2,51	2,52

[^0]NOTES and GENERAL PRINCIPLES on page 233.

geometry			SHEAR							TENSION
			steel-to-CLT lateral face							thread withdrawal lateral face
d_{1} [mm]	L [mm]	$\begin{gathered} \mathbf{b} \\ {[\mathrm{mm}]} \end{gathered}$	$\mathrm{R}_{\mathrm{V}, 90, \mathrm{k}}$ [kN]							$\mathrm{R}_{\mathrm{ax}, 90, \mathrm{k}}$ [kN]
	$\mathrm{S}_{\text {PLATE }}$		1,5 mm	2,0 mm	2,5 mm	$3,0 \mathrm{~mm}$	4,0 mm	$5,0 \mathrm{~mm}$	6,0 mm	-
5	25	21	1,48	1,47	1,45	1,44	1,42	1,38	1,35	1,23
	40	36	2,12	2,12	2,10	2,09	2,05	2,01	1,96	2,11
	50	46	2,26	2,26	2,26	2,26	2,26	2,25	2,23	2,69
	60	56	2,41	2,41	2,41	2,41	2,41	2,39	2,38	3,28
	70	66	2,56	2,56	2,56	2,56	2,56	2,54	2,53	3,86
$\mathrm{S}_{\text {PLATE }}$			$3,0 \mathrm{~mm}$	$4,0 \mathrm{~mm}$	$5,0 \mathrm{~mm}$	6,0 mm	$8,0 \mathrm{~mm}$	$10,0 \mathrm{~mm}$	$12,0 \mathrm{~mm}$	-
7	60	55	2,55	2,77	3,13	3,53	3,86	3,74	3,62	4,50
	80	75	3,45	3,59	3,82	4,10	4,38	4,33	4,29	6,14
	100	95	4,00	4,12	4,36	4,58	4,79	4,74	4,70	7,78

NOTES and GENERAL PRINCIPLES on page 233.

MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

screws inserted WITHOUT pre-drilled hole
lateral face

d_{1}	[mm]		5	7
a_{1}	[mm]	4.d	20	28
a_{2}	[mm]	2,5•d	13	18
$a_{3, t}$	[mm]	6.d	30	42
$a_{3, c}$	[mm]	6.d	30	42
$\mathrm{a}_{4, \mathrm{t}}$	[mm]	6.d	30	42
$\mathrm{a}_{4, \mathrm{c}}$	[mm]	2,5•d	13	18

$d=d_{1}=$ nominal screw diameter

geometry			SHEAR							TENSIIN
			steel-LVL							thread withdrawal flat
$\begin{gathered} \mathrm{d}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{b} \\ {[\mathrm{mm}]} \end{gathered}$	$\mathrm{R}_{\mathrm{v}, 90, \mathrm{k}}$ [kN]							$\begin{gathered} \mathrm{R}_{\mathrm{ax}, 90, \mathrm{k}} \\ {[\mathrm{kN}]} \end{gathered}$
	$S_{\text {PLATE }}$		1,5 mm	2,0 mm	2,5 mm	$3,0 \mathrm{~mm}$	4,0 mm	$5,0 \mathrm{~mm}$	6,0 mm	-
5	25	21	1,59	1,58	1,56	-	-	-	-	1,33
	40	36	2,24	2,24	2,24	2,24	2,23	2,18	2,13	2,27
	50	46	2,39	2,39	2,39	2,39	2,39	2,38	2,36	2,90
	60	56	2,55	2,55	2,55	2,55	2,55	2,54	2,52	3,54
	70	66	2,71	2,71	2,71	2,71	2,71	2,69	2,68	4,17
$\mathrm{S}_{\text {PLate }}$			$3,0 \mathrm{~mm}$	$4,0 \mathrm{~mm}$	$5,0 \mathrm{~mm}$	6,0 mm	$8,0 \mathrm{~mm}$	$10,0 \mathrm{~mm}$	$12,0 \mathrm{~mm}$	-
7	60	55	2,81	2,98	3,37	3,80	4,18	4,05	3,92	4,86
	80	75	3,80	3,88	4,13	4,40	4,63	4,59	4,55	6,63
	100	95	4,25	4,38	4,63	4,87	5,08	5,03	4,99	8,40

STRUCTURAL VALUES

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030
- Design values can be obtained from characteristic values as follows:

$$
R_{d}=\frac{R_{k} \cdot k_{\text {mod }}}{y_{M}}
$$

The coefficients γ_{M} and $k_{\text {mod }}$ should be taken according to the current regulations used for the calculation.

- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- Sizing and verification of the timber elements and metal plates must be done separately.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- The screws must be positioned in accordance with the minimum distances.
- The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
- The characteristic shear-strength value for LBS $\varnothing 5$ nails has been evaluated assuming a plate thickness $=$ S $_{\text {PLATE }}$, always considering the case of thick plate according to ETA-11/0030 (SPLATE $\geq 1,5 \mathrm{~mm}$).
- The characteristic shear-strength value for LBS $\varnothing 7$ screws has been evaluated assuming a plate thickness $=$ SpLATE , and considering the thin (SPLATE $\leq 3,5 \mathrm{~mm}$) intermediate ($3,5 \mathrm{~mm}<$ SPLATE $<7,0 \mathrm{~mm}$) or thick (SPLATE ≥ 7 mm) plate case.
- In the case of combined shear and tensile stress, the following verification must be satisfied

$$
\left(\frac{F_{v, d}}{R_{v, d}}\right)^{2}+\left(\frac{F_{\mathrm{ax}, d}}{R_{\mathrm{ax}, d}}\right)^{2} \leq 1
$$

- In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.

NOTES | TIMBER

- The characteristic steel-timber shear strengths were evaluated considering both an ε angle of $90^{\circ}\left(R_{\mathrm{V}, 90, \mathrm{k}}\right)$ and $0^{\circ}\left(\mathrm{R}_{\mathrm{V}, 0, \mathrm{~K}}\right)$ between the grains of the timber element and the connector.
- Characteristic timber-to-timber shear strengths can be found on page 237.
- The characteristic thread withdrawal resistances were evaluated considering both an ε angle of $90^{\circ}\left(R_{\mathrm{ax}, 90, \mathrm{k}}\right)$ and of $0^{\circ}\left(\mathrm{R}_{\mathrm{ax}, 0, \mathrm{k}}\right)$ between the grains and the connector
- For the calculation process a timber characteristic density $\rho_{\mathrm{k}}=385 \mathrm{~kg} / \mathrm{m}^{3}$ has been considered
For different values of ρ_{k}, the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient $\mathrm{k}_{\text {dens }}$.
$R_{V, k}^{\prime}=k_{\text {dens,v }} \cdot R_{V, k}$
$R_{\mathrm{ax}, k}^{\prime}=k_{d e n s, a x} \cdot R_{\mathrm{ax}, k}$

$\boldsymbol{\rho}_{\mathbf{k}}$ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	350	380	385	405	425	430	440
$C-G L$	$C 24$	$C 30$	GL24h	GL26h	GL28h	GL30h	GL32h
$\mathbf{k}_{\text {dens, }}$	0,90	0,98	1,00	1,02	1,05	1,05	1,07
$\mathbf{k}_{\text {dens,ax }}$	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

NOTES | CLT

- The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.
- For the calculation process a mass density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$ has been considered for CLT elements.
- The characteristics shear resistance are calculated considering a minimum fixing length of $4 d_{1}$.
- The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer
- The axial thread withdrawal strength is valid for minimum CLT thickness ${ }^{t}{ }_{C L L}$, min $=10 \cdot d_{1}$.

NOTES | LVL

- For the calculation process a mass density equal to $\rho_{\mathrm{k}}=480 \mathrm{~kg} / \mathrm{m}^{3}$ has been considered for softwood LVL elements.
- The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.
- The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.

[^0]: $\varepsilon=$ screw-to-grain angle

