ANGLE BRACKET FOR SHEAR AND TENSILE FORCES

HIGH HOLES

Ideal for CLT, it is easy to install thanks to the raised holes. Values also certified with partial fastening for presence of bedding mortar or root beam.

80 kN SHEAR

Exceptional shear strengths. Up to $82,6 \mathrm{kN}$ on concrete (with TCW washer). Up to $46,7 \mathrm{kN}$ on timber.

70 kN TENSILE

On concrete, TCN angle brackets with TCW washers provide excellent tensile strength. $\mathrm{R}_{1, \mathrm{k}}$ up to $69,8 \mathrm{kN}$ characteristic values.

CHARACTERISTICS

FOCUS	shear and tensile joints
HEIGHT	120 mm
THICKNESS	$3,0 \mathrm{~mm}$
FASTENERS	LBA, LBS, VIN-FIX, HYB-FIX, SKR, AB1

MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

FIELDS DF USE

Shear and tensile joints for timber-to-concrete and timber-to-timber applications

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

CONCEALED HOLD DOWN

Ideal on timber-to-concrete both as a hold down at the ends of the walls and as shear angle bracket along the walls. It can be integrated into the floor panels.

ALL DIRECTIDNS

Certified shear ($F_{2,3}$), tensile $\left(F_{1}\right)$ and tilting ($F_{4,5}$) strengths. Values certified also for partial fastenings and with interposed acoustic profiles.

CODES ANDDIMENSIDNS

TITAN N－TCN｜CONCRETE－TO－TIMBER JOINTS

CODE	\mathbf{B}	\mathbf{P}	\mathbf{H}	holes	$\mathrm{n}_{\mathrm{v}} \varnothing 5$	s	\ddots	pcs
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{pcs}]$	$[\mathrm{mm}]$	\ddots	
TCN200	200	103	120	$\varnothing 13$	30	3	\bullet	10
TCN240	240	123	120	$\varnothing 17$	36	3	\bullet	10

TITAN WASHER－TCW｜CONCRETE－TO－TIMBERJOINTS

| CODE | TCN200 | TCN240 | B | P | s | holes | \ddots | pcs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | \ddots | |
| TCW200 | \bullet | - | 190 | 72 | 12 | $\varnothing 14$ | \bullet | 1 |
| TCW240 | - | \bullet | 230 | 73 | 12 | $\varnothing 18$ | \bullet | 1 |

TITAN N－TTN｜TIMBER－TO－TIMBER JOINTS

CODE	B	\mathbf{P}	\mathbf{H}	$\mathrm{n}_{\mathrm{H}} \varnothing 5$	$\mathrm{n}_{\mathrm{v}} \varnothing 5$	s	Pcs	
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$		

ACOUSTIC PROFILE｜TIMBER－TO－TIMBER JOINTS

CODE	type	B	P	s	pcs	
			$[\mathrm{mm}]$	$[\mathrm{mm}]$		

${ }^{(*)}$ To be cut on site

MATERIAL AND DURABILITY

EXTERNAL LOADS
TITAN N：carbon steel DX51D＋Z275．
TITAN WASHER：S235 bright zinc plated carbon steel．
To be used in service classes 1 and 2 （EN 1995－1－1）．
XYLOFON PLATE：35－shore polyurethane compound．
ALADIN STRIPE：compact EPDM．
FIELD OF USE
－Timber to concrete joints

－Timber－to－timber joints
－Timber－to－steel joints

－ADDITIDNAL PRODUCTS－FASTENING

type	description			support
		［mm］		
LBA	Anker nail		4	ए1110
LBS	screw for plates	Ownwrwhts	5	एग川
AB1	mechanical anchor		12－16	R08
SKR	screw anchor		12－16	［－2家気
VIN－FIX ${ }^{(*)}$	chemical anchor		M12－M16	号乐気
HYB－FIX	chemical anchor		M12－M16	

[^0]
GEDMETRY

INSTALLATION ON CDNCRETE

To fix TITAN TCN angle bracket to the concrete foundation, 2 anchors must be used, according to one of the following installation configurations, according to the acting stress.

IDEAL
INSTALLATION

2 anchors positioned in the INTERNAL HOLES (IN) (identified by a mark on the product)

ALTERNATIVE
INSTALLATION anchor and the concrete support

> Maximum stress on the anchor (maximum e_{y} and k_{t} eccentricity)

2 anchors placed in the EXTERNAL HOLES (OUT) (e.g. interaction between the reinforcement)

Reduced stress on the anchor (minimum e_{y} and k_{t} eccentricity)

[^1]INSTALLATION
WITH WASHER

The WASHER TCW must be fastened by means of 2 anchors positioned in the INTERNAL HOLES (IN)

> Reduced connection strength

STRUCTURAL VALUES | SHEAR JOINT F2/з | TIMBER-TD-CONCRETE TCN200

TIMBER STRENGTH

TIMBER
CONCRETE

configuration on timber ${ }^{(1)}$	holes fastening $\varnothing 5$			$\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$	holes fastening Ø13		$\begin{gathered} \mathrm{IN}^{(2)} \\ \mathrm{e}_{\mathrm{y}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$	OUT ${ }^{(3)}$ $\mathrm{e}_{\mathrm{y}, \text { OUT }}$ [mm]
	type	$\begin{gathered} \emptyset \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	[kN]	$\begin{gathered} \emptyset \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$		
- full pattern	LBA nails	$\varnothing 4,0 \times 60$	30	22,1	M12	2	38,5	70,0
	screws LBS	$\varnothing 5,0 \times 50$		26,5				
- pattern 4	LBA nails	$\varnothing 4,0 \times 60$	25	17,4				
	screws LBS	$\varnothing 5,0 \times 50$		20,4				
- pattern 3	LBA nails	$\varnothing 4,0 \times 60$	20	13,7				
	screws LBS	$\varnothing 5,0 \times 50$		16,0				
- pattern 2	LBA nails	$\varnothing 4,0 \times 60$	15	9,6				
	screws LBS	$\varnothing 5,0 \times 50$		11,2				
- pattern 1	LBA nails	$\varnothing 4,0 \times 60$	10	6,4				
	screws LBS	$\varnothing 5,0 \times 50$		7,5				

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

[^2]. STRUCTURAL VALUES | SHEAR JOINT F2/3 | TIMBER-TO-CDNCRETE TCN240

TIMBERSTRENGTH

TIMBER
CONCRETE

configuration on timber ${ }^{(1)}$	holes fastening \square^{5}			$\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$	holes fastening Ø17		$\begin{gathered} \mathrm{IN}^{(2)} \\ \mathrm{e}_{\mathrm{y}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \text { OUT }^{(3)} \\ & e_{\mathrm{y}, \text { OUT }} \\ & {[\mathrm{mm}]} \end{aligned}$
	type	$\emptyset x$ L [mm]	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	$[\mathrm{kN}]$	$\begin{gathered} \emptyset \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$		
- full pattern	LBA nails	$\varnothing 4,0 \times 60$	36	30,3	M16	2	39,5	80,5
	screws LBS	$\varnothing 5,0 \times 50$		36,3				
- pattern 4	LBA nails	$\varnothing 4,0 \times 60$	30	24,0				
	screws LBS	$\varnothing 5,0 \times 50$		28,2				
- pattern 3	LBA nails	$\varnothing 4,0 \times 60$	24	18,8				
	screws LBS	$\varnothing 5,0 \times 50$		22,1				
- pattern 2	LBA nails	$\varnothing 4,0 \times 60$	18	13,3				
	screws LBS	$\varnothing 5,0 \times 50$		15,6				
- pattern 1	LBA nails	$\varnothing 4,0 \times 60$	12	8,9				
	screws LBS	$\varnothing 5,0 \times 50$		10,4				

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

configuration on concrete	holes fastening $\varnothing 17$		$\mathrm{R}_{2 / 3, \mathrm{~d} \text { concrete }}$	
	type	$\emptyset x L$ [mm]	$\begin{aligned} & \mathrm{IN}^{(2)} \\ & {[\mathrm{kN}]} \end{aligned}$	$\begin{aligned} & \text { OUT }^{(3)} \\ & {[\mathrm{kN}]} \end{aligned}$
- uncracked	VIN-FIX 5.8	M16 $\times 160$	67,2	52,9
	VIN-FIX 8.8	M16 $\times 160$	90,1	70,9
	SKR-CE	16×130	67,4	53,1
	AB1	M16 $\times 145$	67,4	53,1
- cracked	VIN-FIX 5.8 / 8.8	M16 $\times 160$	55,0	43,2
	SKR-CE	16×130	55,0	43,2
	AB1	M16 $\times 145$	55,0	43,2
- seismic	HYB-FIX 8.8	M16 $\times 195$	35,2	27,7
	SKR-CE	16×130	19,9	15,8
	AB1	M16 $\times 145$	19,9	15,8

installation	anchor type		$\begin{gathered} \mathrm{t}_{\mathrm{fix}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h}_{\text {ef }} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\mathrm{nom}} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\min } \\ & {[\mathrm{mm}]} \end{aligned}$
	type	$\emptyset \times \mathrm{L}$ [mm]						
TCN240	VIN-FIX 5.8 / 8.8	M16 $\times 160$	3	134	134	140	18	200
	HYB-FIX 8.8	M16 $\times 195$	3	164	164	170	18	
	SKR-CE	16×130	3	85	127	150	14	
	AB1	M16 $\times 145$	3	85	97	105	16	

$\mathbf{t}_{\text {fix }}$	fastened plate thickness
$\mathbf{h}_{\text {nom }}$	nominal anchoring depth
$\mathbf{h}_{\text {ef }}$	effective anchor depth
\mathbf{h}_{1}	minimum hole depth
$\mathbf{d}_{\mathbf{0}}$	hole diameter in the concrete support
$\mathbf{h}_{\text {min }}$	concrete minimum thickness

[^3]
GENERAL PRINCIPLES:

For the general principles of calculation, see page 17.

TCN200 - TCN240 | PARTIAL FASTENING PATTERNS FOR STRESS F2/3

In the presence of design requirements such as $\mathrm{F}_{2 / 3}$ stresses of different value or the presence of an intermediate H_{B} layer (levelling mortar, sill or ground) between the wall and the supporting surface, partial fastening patterns can be adopted:

FULL PATTERN

PATTERN 4

PATTERN 3

PATTERN 2

PATTERN 1

Pattern 2 also applies in case of $\mathrm{F}_{4}, \mathrm{~F}_{5}$ and $\mathrm{F}_{4 / 5}$ stresses.

MAXIMUM HEIGHT OF THE INTERMEDIATE H ${ }_{B}$ LAYER

configuration on timber	\mathbf{n}_{v} holes $\boldsymbol{\varnothing} 5$ [pcs]		CLT $\mathrm{H}_{\mathrm{B} \text { max }}[\mathrm{mm}$]		C/GL $H_{B \text { max }}[m m]$	
	TCN200	TCN240	$\begin{aligned} & \text { nails } \\ & \text { LBA } \varnothing 4 \end{aligned}$	screws LBS Ø5	$\begin{aligned} & \text { nails } \\ & \text { LBA Ø4 } \end{aligned}$	screws LBS Ø5
- full pattern	30	36	20	30	32	10
- pattern 4	25	30	30	40	42	20
- pattern 3	20	24	40	50	52	30
- pattern 2	15	18	50	60	62	40
- pattern 1	10	12	60	70	72	50

The height of the H_{B} intermediate layer (levelling mortar, sill or timber platform beam) is determined by taking into account the following regulatory requirements for fastenings on timber:

- CLT: minimum distances according to ÖNORM EN 1995-1-1 (Annex K) for nails and ETA 11/0030 for screws.
- C/GL: minimum distances for solid timber or glulam with horizontal fibres consistent with EN 1995-1-1 according to ETA considering a timber density of $\rho_{\mathrm{k}} \leq 420 \mathrm{~kg} / \mathrm{m}^{3}$

TCN200-TCN240|VERIFICATION OF ANCHORS FOR CDNCRETE FOR F/3STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).
E_{y} calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT)

The anchor group must be verified for:

```
V Sd,x
MSd,z}=\mp@subsup{F}{2/3,d}{}\times\mp@subsup{e}{y,|N/OUT}{
```


- STRUCTURAL VALUES | SHEAR JIINT F4- F5- F $4 / 5$ |TIMBER-TO-CONCRETE TCN200-TCN240

The group of 2 anchors must be verified for: $V_{S d, y}=2 \times k_{t \perp} \times F_{4, \mathrm{~d}}$
TIMBER

		holes fastening $\varnothing 5$			$\mathrm{R}_{5, \mathrm{k} \text { timber }}$	$\mathrm{R}_{5, \mathrm{k} \text { steel }}$		holes fastening		$\underline{1 N^{(1)}}$			
F_{5}		type	$\begin{gathered} \emptyset \times L \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{v} \\ {[p c s]} \end{gathered}$	[kN]	[kN]	$Y_{\text {steel }}$	$\begin{gathered} \emptyset \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[p c s]} \end{gathered}$	$\mathrm{k}_{\text {+ } ~}$	$k_{\text {t// }}$		
TCN200	- full pattern	LBA nails	$\varnothing 4,0 \times 60$	30	6,6	2,7	Үмо	M12	2	0,5	0,47		Fbolt,// \uparrow $\mathrm{F}_{\text {bolt }, \perp}$
		screws LBS	$\varnothing 5,0 \times 50$										
	- pattern 2	LBA nails	$\varnothing 4,0 \times 60$	15	3,6	1,6	Үмо			0,5	0,83		
		screws LBS	$\varnothing 5,0 \times 50$										
TCN240	- full pattern	LBA nails	$\varnothing 4,0 \times 60$	36	8,0	3,3	Үмо	M16	2	0,5	0,48	$\stackrel{\mathrm{F}_{5}}{5}$	
		screws LBS	$\varnothing 5,0 \times 50$										
	- pattern 2	LBA nails	$\varnothing 4,0 \times 60$	18	4,3	1,9	Үмо			0,5	0,83		(
		screws LBS	$\varnothing 5,0 \times 50$										

The group of 2 anchors must be verified for: $V_{S d, y}=2 \times k_{t \perp} \times F_{5, d i} N_{S d, z}=2 \times k_{t / /} \times F_{5, d}$

The group of 2 anchors must be verified for: $\mathrm{V}_{\mathrm{Sd}, \mathrm{y}}=2 \times \mathrm{k}_{\mathrm{t} \perp} \times \mathrm{F}_{4 / 5, \mathrm{~d} ;} \mathrm{N}_{\mathrm{Sd}, \mathrm{z}}=2 \times \mathrm{k}_{\mathrm{t} / /} \times \mathrm{F}_{4 / 5, \mathrm{~d}}$

The $F_{4}, F_{5}, F_{4 / 5}$ values in the table are valid for the acting stress calculation eccentricity $\mathrm{e}=0$ (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress $\mathrm{F}_{4 / 5, \mathrm{~d}}$ is applied with eccentricity $e \neq 0$, the verification for combined loads is required considering the contribution of the additional tensile component:

$\Delta F_{1, d}=F_{4 / 5, d} \cdot \frac{e}{b}$

[^4][^5]. STRUCTURAL VALUES | SHEAR JOINT F2/3 | TIMBER-TO-CONCRETE TCN200 + TCW200

TIMBER STRENGTH

	TIMBER				CONCRETE			
configuration on timber	type	fastening $\varnothing 5$ $\emptyset x$ L [mm]	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	$\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$ [kN]	holes \emptyset [mm]	$\begin{gathered} \mathrm{ng} \emptyset 13 \\ \mathrm{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\begin{gathered} \mathbf{e}_{\mathrm{y}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{e}_{\mathrm{z}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$
TCN200 + TCW200	LBA nails	$\varnothing 4,0 \times 60$	30	56,7	M12	2	38,5	83,5
	screws LBS	$\varnothing 5,0 \times 50$		66,4				

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration on concrete	holes fastening $\varnothing 13$		$\mathrm{R}_{2 / 3 \text {, d concrete }}$
	type	$\emptyset \times L$ [mm]	$\begin{aligned} & \mathrm{IN}^{(1)} \\ & {[\mathrm{kN}]} \end{aligned}$
- uncracked	VIN-FIX 5.8	M12 $\times 140$	27,4
	HYB-FIX 8.8	M12 $\times 195$	41,5
	SKR-CE	12×110	17,4
	AB1	M12 $\times 120$	26,1
- cracked	VIN-FIX 5.8	M12 $\times 140$	21,1
	HYB-FIX 8.8	M12 $\times 195$	41,8
	AB1	M12 $\times 120$	17,3
- seismic	HYB-FIX 8.8	M12 $\times 195$	14,0

installation	anchor type		$\begin{gathered} \mathrm{t}_{\text {fix }} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h e f}_{\mathrm{ef}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\text {nom }} \\ & {[\mathrm{mm}]} \end{aligned}$	$\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\min } \\ & {[\mathrm{mm}]} \end{aligned}$
	type	$\emptyset \times \mathrm{L}$ [mm]						
TCN200 + TCW200	VIN-FIX 5.8	M12 $\times 140$	15	111	111	120	14	200
	HYB-FIX 8.8	M12 $\times 195$	15	166	166	175	14	
	SKR-CE	12×110	15	64	95	115	10	
	AB1	M12 $\times 120$	15	70	80	85	12	

[^6]INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

[^7]. STRUCTURAL VALUES | SHEAR JOINT F2/3 | TIMBER-TO-CDNCRETE TCN24D + TCW240

TIMBERSTRENGTH

	TIMBER				CONCRETE			
configuration on timber	type	fastening $\varnothing 5$ $\begin{gathered} \emptyset \times L \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	$\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$	holes \varnothing [mm]	$\begin{gathered} \mathrm{ng} \emptyset 17 \\ \mathrm{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\begin{gathered} \mathbf{e}_{\mathrm{y}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{e}_{\mathrm{z}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$
TCN240 + TCW240	LBA nails	$\varnothing 4,0 \times 60$	36	70,5	M16	2	39,5	83,5
	screws LBS	$\varnothing 5,0 \times 50$		82,6				

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration on concrete	holes fastening $\varnothing 17$		$\begin{gathered} \mathrm{R}_{2 / 3, \mathrm{~d} \text { concrete }} \\ \mathrm{IN}^{(1)} \\ {[\mathrm{kN}]} \end{gathered}$
	type	$\varnothing \times L$	
		[mm]	
- uncracked	VIN-FIX 5.8	M16 195	57,5
	HYB-FIX 8.8	M16 x 195	80,4
	SKR-CE	16×130	32,1
	AB1	M16 $\times 145$	39,5
- cracked	VIN-FIX 5.8	M16 $\times 195$	32,2
	HYB-FIX 8.8	M16 $\times 245$	80,4
	AB1	M16 $\times 145$	28,4
- seismic	HYB-FIX 8.8	M16 $\times 245$	23,9

installation	anchor type		$\begin{gathered} \mathrm{t}_{\mathrm{fix}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h}_{\mathrm{ef}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\text {nom }} \\ & {[\mathrm{mm}]} \end{aligned}$	$\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\min } \\ & {[\mathrm{mm}]} \end{aligned}$
	type	$\emptyset \times \mathrm{L}$ [mm]						
TCN240 + TCW240	VIN-FIX 5.8	M16 x 195	15	160	160	165	18	200
	HYB-FIX 8.8	M16 $\times 195$	15	160	160	165	18	200
		M16 $\times 245$	15	210	210	215		250
	SKR-CE	16×130	15	85	115	145	14	200
	AB1	M16 x 145	15	85	97	105	16	

$\mathrm{t}_{\text {fix }}$	fastened plate thickness
$\mathrm{h}_{\text {nom }}$	nominal anchoring depth
$\mathrm{h}_{\text {ef }}$	effective anchor depth
h_{1}	minimum hole depth
$\mathrm{d}_{\mathbf{0}}$	hole diameter in the concrete support
$\mathrm{h}_{\text {min }}$	concrete minimum thickness

GENERAL PRINCIPLES:

For the general principles of calculation, see page 17.

- TCW200-TCW240|VERIFICATION OF ANCHORS FOR CONCRETE FOR F2/3STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e)
The calculation eccentricities e_{y} and e_{z} refer to installation with WASHER TCW of 2 internal anchors (IN).

The anchor group must be verified for:

$$
\begin{aligned}
& V_{S d, x}=F_{2 / 3, d} \\
& M_{S d, z}=F_{2 / 3, d} \times e_{y, I N} \\
& M_{S d, y}=F_{2 / 3, d} \times e_{z, I N}
\end{aligned}
$$

- TCW200 - TCW240|CONNECTION STIFFNESS FOR STRESS F2/3

EVALUTATION OF SLIP MODULUS K2/3,ser

- $\quad K_{2 / 3, \text { ser }}$ experimental average value for TITAN joint on CLT (Cross Laminated Timber) according to ETA 11/0496

type	fastening type $\emptyset \times L[m m]$	n_{v} $[p c s]$	$K_{2 / 3, s e r}$ $[\mathrm{~mm}]$
TCN200 + TCW200	LBS nails $\varnothing 5,0 \times 50$	30	9600
TCN240 + TCW240	LBS nails $\varnothing 5,0 \times 50$	36	10000

- $\mathrm{K}_{\text {ser }}$ according to EN 1995-1-1 for timber-to-timber joint screws* GL24h/C24

Screws (nails without pre-drilling hole) $\frac{\rho_{m}^{1,5} \cdot d^{0.8}}{30}$ (EN 1995 『7.1)

type	fastening type $\varnothing \times L[m m]$	\mathbf{n}_{v} $[p c s]$	$K_{\text {ser }}$ $[\mathrm{mm}]$
TCN200 + TCW200	LBS nails $\varnothing 5,0 \times 50$	30	31192
TCN240 + TCW240	LBS nails $\varnothing 5,0 \times 50$	36	$\mathbf{3 7 4 3 1}$

* For steel-to-timber connections the reference regulation indicates the possibility of doubling the value of $\mathrm{K}_{\text {ser }}$ listed in the table (7.1 (3)).

- STRUCTURAL VALUES |TENSILE JOINT F ${ }_{1} \mid$ TIMBER-TO-CONCRETE TCN200 + TCW200

TIMBERSTRENGTH

	TIMBER				STEEL		CONCRETE		
configuration on timber	hol type	fastening 05 $\emptyset x L$ [mm]	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	$\mathrm{R}_{1, \mathrm{k} \text { timber }}$	$[\mathrm{kN}]$	$\gamma_{\text {steel }}$	hole \emptyset [mm]	$\begin{gathered} \varnothing 13 \\ \mathrm{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\begin{gathered} \mathrm{IN}^{(1)} \\ \mathrm{k}_{\mathrm{t} / /} \\ {[\mathrm{mm}]} \end{gathered}$
	LBA nails	$\varnothing 4,0 \times 60$	30	57,9	45,7	Үмо	M12	2	1,09
	screws LBS	$\varnothing 5,0 \times 50$		68,1					

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration on concrete	holes fastening $\emptyset 13$		$\begin{aligned} & \mathrm{R}_{1, \mathrm{~d}} \text { concrete } \\ & \mathrm{IN}^{(1)} \\ & {[\mathrm{kN}]} \end{aligned}$
	type	$\emptyset \times L$	
		[mm]	
- uncracked	VIN-FIX 5.8	M12 $\times 195$	21,3
	HYB-FIX 8.8	M12 195	40,8
- cracked	VIN-FIX 5.8	M12 $\times 195$	16,0
	HYB-FIX 5.8	M12 195	23,0
	HYB-FIX 8.8	M12 $\times 245$	30,6
- seismic	HYB-FIX 8.8	M12 $\times 245$	11,8

installation	anchor type		$\begin{gathered} \mathrm{t}_{\mathrm{fix}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{ef}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathrm{h}_{\text {nom }} \\ & {[\mathrm{mm}]} \end{aligned}$	$\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathrm{h}_{\text {min }} \\ & {[\mathrm{mm}]} \end{aligned}$
	type	$\varnothing \times \mathrm{L}$ [mm]						
TCN200 + TCW200	VIN-FIX 5.8	M12 195	15	160	160	165	14	200
	HYB-FIX 5.8 / 8.8	M12 $\times 195$	15	160	160	165	14	
	HYB-FIX 8.8	M12 $\times 245$	15	210	210	215	14	250

[^8][^9]
GENERAL PRINCIPLES:

[^10]- STRUCTURAL VALUES|TENSILE JOINT F ${ }_{1} \mid$ TIMBER-TO-CDNCRETE TCN240 + TCW240

TIMBERSTRENGTH

	TIMBER				STEEL		CONCRETE		
configuration on timber	hole type	tening $\varnothing 5$ $\emptyset x L$ [mm]	$\begin{gathered} \mathrm{n}_{\mathrm{v}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\mathbf{R}_{1, k} \text { timber }$	[kN]	$\gamma_{\text {steel }}$	hol \varnothing [mm]	$\begin{gathered} \varnothing 17 \\ \mathrm{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\begin{gathered} \mathrm{IN}^{(1)} \\ \mathbf{k}_{\mathrm{t} / /} \\ {[\mathrm{mm}]} \end{gathered}$
	LBA nails	$\varnothing 4,0 \times 60$	36	69,5	68,9	Үмо	M16	2	1,08
	screws LBS	$\varnothing 5,0 \times 50$		81,7					

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration on concrete	holes fastening $\emptyset 17$		$\mathrm{R}_{1, \mathrm{~d} \text { concrete }}$
	type	$\emptyset \mathrm{xL}$	$1 \mathrm{~N}^{(1)}$
		[mm]	[kN]
- uncracked	VIN-FIX 5.8	M16 $\times 195$	27,4
	HYB-FIX 8.8	M16 $\times 195$	45,7
- cracked	VIN-FIX 5.8	M16 $\times 195$	15,3
	HYB-FIX 5.8	M16 $\times 195$	31,2
	HYB-FIX 8.8	M16 $\times 245$	42,2
- seismic	HYB-FIX 8.8	M16 $\times 245$	14,9
		M16 $\times 330$	21,1

installation	anchor type		$\begin{gathered} \mathrm{t}_{\mathrm{fix}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h}_{\mathrm{ef}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathrm{h}_{\text {nom }} \\ & {[\mathrm{mm}]} \end{aligned}$	$\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathbf{h}_{\text {min }} \\ & {[\mathrm{mm}]} \end{aligned}$
	type	ØxL[mm]						
TCN240 + TCW200	VIN-FIX 5.8	M16 $\times 195$	15	160	160	165	18	200
	HYB-FIX 5.8	M16 $\times 195$	15	160	160	165	18	
	HYB-FIX 8.8	M16 X 195	15	160	160	165	18	200
		M16 x 245	15	210	210	215	18	250
		M16 x 330	15	295	295	300	18	350

$\mathbf{t}_{\text {fix }}$	fastened plate thickness
$\mathbf{h}_{\text {nom }}$	nominal anchoring depth
$\mathbf{h}_{\text {ef }}$	effective anchor depth
\mathbf{h}_{1}	minimum hole depth
$\mathbf{d}_{\mathbf{0}}$	hole diameter in the concrete support
$\mathbf{h}_{\text {min }}$	concrete minimum thickness

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

general principles:

For the general principles of calculation, see page 17.

- TCW200-TCW240|VERIFICATION OF ANCHORS FOR CONCRETE FOR F1 STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table $\left(k_{t}\right)$.
2 internal anchors (IN) must be provided for installation on concrete with WASHER TCW.

The anchor group must be verified for:
$N_{S d, z}=2 \times k_{t / /} \times F_{1, d}$

TCW200 - TCW240 |CDNNECTIDN STIFFNESS FOR STRESS F1

EVALUTATION OF SLIP MODULUS K $\mathrm{K}_{1, \text { ser }}$

- $K_{1, \text { ser }}$ experimental average value for TITAN joint on C24 CLT (Cross Laminated Timber) panels

type	fastening type $\varnothing \times L[\mathrm{~mm}]$	n_{v} $[\mathrm{pcs}]$	$\mathrm{K}_{1, \text { ser }}$ $[\mathrm{N} / \mathrm{mm}]$
TCN200 + TCW200	-	-	-
TCN240 + TCW240	LBA nails $\varnothing 4,0 \times 60$	36	$\mathbf{2 8 4 5 5}$

- $\mathrm{K}_{\text {ser }}$ according to EN 1995-1-1 for timber-to-timber joint nails* GL24h/C24

Nails (without pre-drilling hole) $\frac{\rho_{m}^{1,5} \cdot d^{0,8}}{30}$ (EN 1995 § 7.1)

type	fastening type $\varnothing \times[\mathrm{mm}]$	$\mathbf{n}_{\mathbf{v}}$ $[p c s]$	$\mathbf{K}_{\text {ser }}$ $[\mathrm{N} / \mathrm{mm}]$
TCN200 + (TCW200)	LBA nails $\varnothing 4,0 \times 60$	30	$\mathbf{2 6 0 9 3}$
TCN240 (+ TCW240)	LBA nails $\varnothing 4,0 \times 60$	36	$\mathbf{3 1 3 1 1}$

[^11]- STRUCTURAL VALUES | SHEAR JOINT F2/3 | TIMBER-TO-TIMBER TTN240

	TIMBER					
configuration	holes fastening $\varnothing 5$			$\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\begin{gathered} \text { profile }^{(2)} \\ \mathrm{s} \\ {[\mathrm{~mm}]} \end{gathered}$	$\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$
on timber ${ }^{(1)}$	type	$\begin{gathered} \emptyset \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$			
TTN240	LBA nails	$\varnothing 4,0 \times 60$	36	36	-	37,9
	screws LBS	$\varnothing 5,0 \times 50$				46,7
TTN240 + XYLOFON	LBA nails	$\varnothing 4,0 \times 60$	36	36	6	24,8
	screws LBS	$\varnothing 5,0 \times 50$				22,8
TTN240 + ALADIN STRIPE SOFT	LBA nails	$\varnothing 4,0 \times 60$	36	36	5	28,9
	screws LBS	$\varnothing 5,0 \times 50$				27,5
TTN240 + ALADIN STRIPE EXTRA SOFT	LBA nails	$\varnothing 4,0 \times 60$	36	36	7	27,5
	screws LBS	$\varnothing 5,0 \times 50$				25,8

- STRUCTURAL VALUES |TENSILE JOINT F F_{1} |TIMBER-TO-TIMBER TTN24D

TIMBER

NOTES:

${ }^{(1)}$ The TTN240 angle bracket can be installed in combination with different resilient acoustic profiles inserted below the horizontal flange in full pattern configuration. The strength values in the table are given in ETA-11/0496 and calculated according to "Blaß, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively disregarding the stiffness of the profile.

[^12]| STRUCTURAL VALUES | SHEAR JOINT F4 $-\mathrm{F}_{5}-\mathrm{F}_{4 / 5}$ |TIMBER-TO-TIMBER TTN240

		TIMBER				STEEL		F_{4}		
F_{4}		holes fastening $\varnothing 5$			$\mathbf{R}_{4, \mathrm{k} \text { timber }}$	$\mathrm{R}_{4, \mathrm{k} \text { steel }}$				
		type	$\emptyset x L$	$\mathbf{n}_{\mathbf{v}}$						
			[mm]	[pcs]	[kN]	[kN]	$Y_{\text {steel }}$			
TTN240	- full pattern	LBA nails	$\varnothing 4,0 \times 60$	$36+36$	23,8	31,1	YMO			
		screws LBS	$\varnothing 5,0 \times 50$							\square

		TIMBER				STEEL		$\stackrel{F_{5}}{\leftarrow}$		
F_{5}		holes fastening $\varnothing 5$			$\mathrm{R}_{5, \mathrm{k} \text { timber }}$	$\mathrm{R}_{5, \mathrm{k} \text { steel }}$				
		type	$\emptyset x L$	n_{v}		[kN]	$\gamma_{\text {steel }}$			
			[mm]	[pcs]	[kN]					
TTN240	- full pattern	LBA nails	$\varnothing 4,0 \times 60$	$36+36$	7,3	3,4	$Y_{\text {MO }}$	\leftarrow		1
		screws LBS	$\varnothing 5,0 \times 50$							-

									-	
			les fastening		$\mathrm{R}_{4 / 5, \mathrm{k} \text { timber }}$					
$\mathrm{F}_{4 / 5}$ TWD AN	LE BRACKETS	type	$\emptyset x \mathrm{~L}$	n_{v}						
TTN240		LBA nails	$\varnothing 4,0 \times 60$					\longrightarrow		
TTN240	- fult patern	screws LBS	$\varnothing 5,0 \times 50$	$72+72$	26,7	31,6	YMO			\square

The $F_{4}, F_{5}, F_{4 / 5}$ values in the table are valid for the acting stress calculation eccentricity $\mathrm{e}=0$ (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress $\mathrm{F}_{4 / 5 \text {, d }}$ is applied with eccentricity $e \neq 0$, the verification for combined loads is required considering the contribution of the additional tensile component:

$\Delta F_{1, d}=F_{4 / 5, d} \cdot \frac{e}{b}$

GENERAL PRINCIPLES:

For the general principles of calculation, see page 17.

GENERAL PRINCIPLES:

- Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0496. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments (see Chapter 6 ANCORS FOR CONCRETE). The connection design strength values are obtained from the values on the table as follows:
$R_{d}=\min \left\{\begin{array}{l}\frac{R_{k, \text { timber }} \cdot k_{\text {mod }}}{\gamma_{M}} \\ \frac{R_{k, \text { steel }}}{\gamma_{\text {steel }}} \\ R_{d, \text { concrete }}\end{array}\right.$
The coefficients $k_{\text {mod }}, y_{M}$ and $y_{\text {steel }}$ should be taken according to the current regulations used for the calculation.
- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- For the calculation process a timber characteristic density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$ has been considered. For higher ρ_{k} values, the strength on timber side can be converted by the $\mathrm{k}_{\text {dens }}$ value:

$$
\begin{aligned}
& k_{\text {dens }}=\left(\frac{\rho_{k}}{350}\right)^{0,5} \text { for } 350 \mathrm{~kg} / \mathrm{m}^{3} \leq \rho_{k} \leq 420 \mathrm{~kg} / \mathrm{m}^{3} \\
& k_{\text {dens }}=\left(\frac{\rho_{k}}{350}\right)^{0,5} \text { for LVL with } \rho_{k} \leq 500 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemcal anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled ($a_{\text {gap }}=1$).

[^0]: ${ }^{(*)}$ For more information，see the data sheet available at www．rothoblaas．com

[^1]: Optimized connection strength

[^2]: NOTES:
 (1) Partial fastening pattern on page 7 .
 (3) Installation of the anchors in external holes (OUT).
 ${ }^{(2)}$ Installation of the anchors in the two internal holes (IN).

[^3]: INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

[^4]: NOTES:
 ${ }^{(1)}$ Installation of the anchors in the two internal holes (IN).

[^5]: For the general principles of calculation, see page 17

[^6]: $\mathrm{t}_{\text {fix }}$
 $h_{\text {nom }}$
 $h_{\text {ef }}$
 h_{1}
 h_{1}
 $\mathrm{~d}_{0}$
 $h_{\text {min }}$
 fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

[^7]: NOTES:
 ${ }^{(1)}$ Installation of the anchors in the two internal holes (IN).

[^8]: $\mathrm{t}_{\text {fix }}$ fastened plate thickness $h_{\text {nom }}$
 $h_{\text {ef }}$
 h_{1}
 d_{0}
 $h_{\text {min }}$ nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

[^9]: INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

[^10]: For the general principles of calculation, see page 17.

[^11]: * For steel-to-timber connections the reference standard indicates the possibility of doubling the value of $\mathrm{K}_{\text {ser }}$ listed in the table (7.1 (3))

[^12]: ${ }^{(2)}$ Profile thickness: in the case of ALADIN profile, the calculation took into account the reduced thickness, due to the corrugated section and the consequent crushing induced by the nail head during insertion.

