TITAN N

ANGLE BRACKET FOR SHEAR AND TENSILE FORCES

HIGH HOLES

Ideal for CLT, it is easy to install thanks to the raised holes. Values also certified with partial fastening for presence of bedding mortar or root beam.

80 kN SHEAR

Exceptional shear strengths. Up to 82,6 kN on concrete (with TCW washer). Up to 46,7 kN on timber.

70 kN TENSILE

On concrete, TCN angle brackets with TCW washers provide excellent tensile strength. $R_{1,k}$ up to 69,8 kN characteristic values.

CHARACTERISTICS

FOCUS	shear and tensile joints		
HEIGHT	120 mm		
THICKNESS	3,0 mm		
FASTENERS	LBA, LBS, VIN-FIX, HYB-FIX, SKR, AB1		

MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

FIELDS OF USE

Shear and tensile joints for timber-to-concrete and timber-to-timber applications

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

CONCEALED HOLD DOWN

Ideal on timber-to-concrete both as a hold down at the ends of the walls and as shear angle bracket along the walls. It can be integrated into the floor panels.

ALL DIRECTIONS

Certified shear $(F_{2,3})$, tensile (F_1) and tilting $(F_{4,5})$ strengths. Values certified also for partial fastenings and with interposed acoustic profiles.

CODES AND DIMENSIONS

TITAN N - TCN | CONCRETE-TO-TIMBER JOINTS

CODE	В	Р	Н	holes	n _v Ø5	s		pcs
	[mm]	[mm]	[mm]	[mm]	[pcs]	[mm]	A	
TCN200	200	103	120	Ø13	30	3	•	10
TCN240	240	123	120	Ø17	36	3	•	10

TITAN WASHER - TCW | CONCRETE-TO-TIMBER JOINTS

CODE	TCN200	TCN240	В	Р	s	holes		pcs
			[mm]	[mm]	[mm]	[mm]	p of R	
TCW200	•	-	190	72	12	Ø14	•	1
TCW240	-	•	230	73	12	Ø18	•	1

TITAN N - TTN | TIMBER-TO-TIMBER JOINTS

CODE	В	Р	Н	n _H Ø5	n _v Ø5	s		pcs
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
TTN240	240	93	120	36	36	3	•	10

ACOUSTIC PROFILE | TIMBER-TO-TIMBER JOINTS

CODE	type	В	P [mm]	s [mm]		pcs
XYL35120240	xylofon plate	240 mm	120	6	•	10
ALADIN95	soft	50 m ^(*)	95	5	•	10
ALADIN115	extra soft	50 m ^(*)	115	7	•	10

MATERIAL AND DURABILITY

TITAN N: carbon steel DX51D+Z275.

TITAN WASHER: S235 bright zinc plated carbon steel. To be used in service classes 1 and 2 (EN 1995-1-1).

XYLOFON PLATE: 35-shore polyurethane compound.

ALADIN STRIPE: compact EPDM.

FIELD OF USE

- Timber to concrete joints
- Timber-to-timber joints
- Timber-to-steel joints

ADDITIONAL PRODUCTS - FASTENING

type	description		d	support
			[mm]	
LBA	Anker nail		4	
LBS	screw for plates	(D111111111111+++++++++++++++++++++++++	5	
AB1	mechanical anchor		12 - 16	
SKR	screw anchor		12 - 16	
VIN-FIX(*)	chemical anchor		M12 - M16	
HYB-FIX	chemical anchor		M12 - M16	

 $^{^{(*)}}$ For more information, see the data sheet available at www.rothoblaas.com

 $^{^{(*)}}$ To be cut on site

GEOMETRY

■ INSTALLATION ON CONCRETE

To fix **TITAN TCN** angle bracket to the concrete foundation, **2 anchors** must be used, according to one of the following installation configurations, according to the acting stress.

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE

TCN200

TIMBER STRENGTH

	TIMBER					
configuration		holes fastening Ø5		R _{2/3,k timber}		
on timber ⁽¹⁾	type	Ø x L [mm]	n _v [pcs]	[kN]		
f	LBA nails	Ø4,0 x 60	70	22,1		
full pattern	screws LBS Ø5,0 x 50	26,5				
nattava A	LBA nails	Ø4,0 x 60	25	17,4		
• pattern 4	screws LBS	Ø5,0 x 50	25	20,4		
- nattorn 7	LBA nails	Ø4,0 x 60	20	13,7		
• pattern 3	screws LBS	Ø5,0 x 50	20	16,0		
nottown 2	LBA nails	Ø4,0 x 60	15	9,6		
• pattern 2	screws LBS	Ø5,0 x 50	15	11,2		
nottorn 1	LBA nails	Ø4,0 x 60	10	6,4		
• pattern 1	screws LBS	Ø5,0 x 50	10	7,5		

CONCRETE

holes fast	holes fastening Ø13		OUT ⁽³⁾
Ø	n _H	e _{y,IN}	e _{y,OUT}
[mm]	[pcs]	[mm]	[mm]
M12	2	38,5	70,0

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

configuration	holes faste	ning Ø13	R _{2/3,d concrete}		
on concrete	type	ØxL	IN ⁽²⁾	OUT ⁽³⁾	
		[mm]	[kN]	[kN]	
	VIN-FIX 5.8	M12 x 140	35,5	29,1	
• uncracked	VIN-FIX 8.8	M12 x 140	48,1	39,1	
uncracked	SKR-CE	12 x 90	38,3	31,3	
	AB1	M12 x 100	35,4	28,9	
	VIN-FIX 5.8	M12 x 140	35,2	29,1	
• cracked	VIN-FIX 8.8	M12 x 140	39,8	32,6	
• Crackeu	SKR-CE	12 x 90	34,6	28,4	
	AB1	M12 x 100	35,4	28,9	
	HYB-FIX 8.8	M12 x 195	29,0	23,8	
• seismic	SKR-CE	12 x 90	8,8	7,2	
	AB1	M12 x 100	10,6	8,7	

installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8 / 8.8	M12 x 140	3	121	121	130	14	200	
TCN200	HYB-FIX 8.8	M12 x 195	3	176	176	185	14	210	
TCN200	SKR-CE	12 x 90	3	64	87	110	10	200	
	AB1	M12 x 100	3	70	80	85	12	200	

 ${\sf INA}\ precut\ threaded\ rod\ complete\ with\ nut\ and\ washer:\ see\ {\sf INA}\ data\ sheet\ at\ www.rothoblaas.com$

t_{fix} h_{nom} h_{ef} h₁ d₀ h_{min} fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{^{(1)}}$ Partial fastening pattern on page 7.

 $[\]ensuremath{^{(2)}}$ Installation of the anchors in the two internal holes (IN).

 $^{^{(3)}}$ Installation of the anchors in external holes (OUT).

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE TCN240

TIMBER STRENGTH

	TIMBER				
configuration		holes fastening Ø5		R _{2/3,k timber}	
on timber ⁽¹⁾	type	ØxL	n _v		
		[mm]	[pcs]	[kN]	
- full nattorn	LBA nails	Ø4,0 x 60	36	30,3	
• full pattern	screws LBS	Ø5,0 x 50	30	36,3	
- nattorn A	LBA nails	Ø4,0 x 60	30	24,0	
• pattern 4	screws LBS	Ø5,0 x 50	30	28,2	
• pattern 3	LBA nails	Ø4,0 x 60	24	18,8	
• pattern 5	screws LBS	Ø5,0 x 50	24	22,1	
- nattorn 2	LBA nails	Ø4,0 x 60	18	13,3	
• pattern 2	screws LBS	Ø5,0 x 50	10	15,6	
- nattorn 1	LBA nails	Ø4,0 x 60	12	8,9	
• pattern 1	screws LBS	Ø5,0 x 50	12	10,4	

CONCRETE

holes fast	holes fastening Ø17		OUT ⁽³⁾
Ø [mm]	n _H [pcs]	e _{y,IN} [mm]	е _{у,оит} [mm]
M16	2	39,5	80,5

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

configuration	holes faste	ning Ø17	R _{2/3,d}	concrete
on concrete	type	ØxL	IN ⁽²⁾	OUT ⁽³⁾
		[mm]	[kN]	[kN]
	VIN-FIX 5.8	M16 x 160	67,2	52,9
• uncracked	VIN-FIX 8.8	M16 x 160	90,1	70,9
• uncracked	SKR-CE	16 x 130	67,4	53,1
	AB1	M16 x 145	67,4	53,1
	VIN-FIX 5.8 / 8.8	M16 x 160	55,0	43,2
• cracked	SKR-CE	16 x 130	55,0	43,2
	AB1	M16 x 145	55,0	43,2
	HYB-FIX 8.8	M16 x 195	35,2	27,7
• seismic	SKR-CE	16 x 130	19,9	15,8
	AB1	M16 x 145	19,9	15,8

installation	anchor	type	t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8 / 8.8	M16 x 160	3	134	134	140	18	
TCN240	HYB-FIX 8.8	M16 x 195	3	164	164	170	18	200
TCN240	SKR-CE	16 x 130	3	85	127	150	14	200
	AB1	M16 x 145	3	85	97	105	[mm] 18 18	

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

t_{fix} h_{nom} h_{ef} h₁ d₀ fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

GENERAL PRINCIPLES:

TCN200 - TCN240 | PARTIAL FASTENING PATTERNS FOR STRESS F_{2/3}

In the presence of design requirements such as $F_{2/3}$ stresses of different value or the presence of an intermediate H_B layer (levelling mortar, sill or ground) between the wall and the supporting surface, partial fastening patterns can be adopted:

Pattern 2 also applies in case of F_4 , F_5 and $F_{4/5}$ stresses.

MAXIMUM HEIGHT OF THE INTERMEDIATE H_B LAYER

configuration		6 5 ()		LT	C/GL H _{B max} [mm]			
on timber	n _v holes	Ø5 [pcs]	H _{B max}	(mm]				
	TCN200	TCN240	nails	screws	nails	screws		
	TCN200	TCN240	LBA Ø4	LBS Ø5	LBA Ø4	LBS Ø5		
• full pattern	30	36	20	30	32	10		
• pattern 4	25	30	30	40	42	20		
• pattern 3	20	24	40	50	52	30		
• pattern 2	15	18	50	60	62	40		
• pattern 1	10	12	60	70	72	50		

The height of the H_B intermediate layer (levelling mortar, sill or timber platform beam) is determined by taking into account the following regulatory requirements for fastenings on timber:

- CLT: minimum distances according to ÖNORM EN 1995-1-1 (Annex K) for nails and ETA 11/0030 for screws.
- C/GL: minimum distances for solid timber or glulam with horizontal fibres consistent with EN 1995-1-1 according to ETA considering a timber density of $\rho_K \le 420 \text{ kg/m}^3$.

■ TCN200 - TCN240 | VERIFICATION OF ANCHORS FOR CONCRETE FOR F_{2/3} STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

E_V calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).

The anchor group must be verified for:

 $V_{Sd,x} = F_{2/3,d}$

 $M_{Sd,z} = F_{2/3,d} \times e_{y,IN/OUT}$

■ STRUCTURAL VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} | TIMBER-TO-CONCRETE

TCN200-TCN240

			TIMBI	ΕR		STI	EEL		CONC	RETE											
		hol	es fastening Ø	5	R _{4,k timber}	R _{4,k}	steel	holes fa	stening	IN	l ⁽¹⁾										
F ₄		type	ØxL	n_{v}				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}										
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]												
	full nailing	LBA nails	Ø4,0 x 60	30	20,9	22,4	N														
CN200	• rull rialling	screws LBS	Ø5,0 x 50	30	20,9	22,4	У М0	M12	2	0,5	_						H		H	H	
14200	• pattern 2	LBA nails	Ø4,0 x 60	15	20,7	24,3	Maria	14177		0,5											
	patternz	screws LBS	Ø5,0 x 50	15	20,7	24,5	У мо														
	• full nailing	LBA nails	Ø4,0 x 60	36	24,1	26,9	Vivo					F ₄ F _b	F ₄ F _{bc}	F ₄ F _b	F ₄ F _{bc}	F ₄ F _{bo}	F ₄ F _{bol}				
N240	• rull mailing	screws LBS	Ø5,0 x 50		27,1	20,5	У мо	M16	2	0,5	_										
142-40	• pattern 2	LBA nails	Ø4,0 x 60	18	23,9	29,1	Vivo	14110		0,5	_										
	• pattern Z	screws LBS	Ø5,0 x 50	10	23,9	29,1	У мо														

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4,d}$

			TIMB	ER		STI	EEL		CONC	RETE	
		hol	holes fastening Ø5		R _{5,k timber}	R _{5,k}	steel	holes fastening		IN ⁽¹⁾	
F ₅		type	ØxL	n_{ν}				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
	• full pattern	LBA nails	Ø4,0 x 60	30	6,6	2,7	N.			0,5	0,47
CN200	• rutt pattern	screws LBS	Ø5,0 x 50	30	0,0	۷,7	Үмо	M12	2	0,5	0,47
SIN200	• pattern 2	LBA nails	Ø4,0 x 60	15	3,6	1,6		IVIIZ		0,5	0,83
	• pattern z	screws LBS	Ø5,0 x 50	13	3,0	1,0	Үмо			0,5	0,63
	• full pattern	LBA nails	Ø4,0 x 60	36	8,0	3,3				0,5	0,48
N240	• rutt pattern	screws LBS	Ø5,0 x 50	30	8,0	3,3	Үмо	M16	2	0,5	0,46
N240	• pattern 2	LBA nails	Ø4,0 x 60	18	4,3	1,9		INITO		0,5	0,83
	• pattern Z	screws LBS	Ø5,0 x 50	10	4,3	1,9	Үмо			0,5	0,63

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{5,d}$; $N_{Sd,z} = 2 \times k_{t/\prime} \times F_{5,d}$

			TIMB	ER		ST	EEL		CONC	RETE	
_		hol	es fastening Ø	5	R _{4/5,k timber}	R _{4/5,}	k steel	holes fa	stening	IN	(1)
F _{4/5} TWILAN	GLE BRACKETS	type	ØxL	n _v				Ø	n _H	$k_{t\perp}$	k _{t//}
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
	• full pattern	LBA nails	Ø4,0 x 60	30 + 30	25,6	14,9	No			0,41	0,08
TCN200	• Tutt pattern	screws LBS	Ø5,0 x 50	30 + 30	23,0	14,5	Үмо	M12	2 + 2	0,41	0,08
CNZUU	• pattern 2	LBA nails	Ø4,0 x 60	15 + 15	22,4	20,9	N	MIZ	2 + 2	0,46	0,06
	- pattern 2	screws LBS	Ø5,0 x 50	15 + 15	22,7	20,5	Үмо			0,40	0,00
	• full pattern	LBA nails	Ø4,0 x 60	36 + 36	27,8	24,7	No			0,43	0,06
CN240	• Tutt pattern	screws LBS	Ø5,0 x 50	30 + 30	27,0	27,7	Үмо	M16	2 + 2	0,43	0,00
CN240	• pattern 2	LBA nails	Ø4,0 x 60	18 + 18	25,2	30,6	No	IVIIO	2 7 2	0,48	0,04
	• pattern Z	screws LBS	Ø5,0 x 50	10 + 10	23,2	30,0	Үмо			0,40	0,04

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4/5,d}$; $N_{Sd,z} = 2 \times k_{t//} \times F_{4/5,d}$

The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress $F_{4/5,d}$ is applied with eccentricity $e\neq 0$, the verification for combined loads is required considering the contribution of the additional tensile component:

 $^{(1)}$ Installation of the anchors in the two internal holes (IN).

$$\Delta F_{1,d} = F_{4/5,d} \cdot \frac{e}{b}$$

NOTES: GENERAL PRINCIPLES:

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE

TCN200+TCW200

TIMBER STRENGTH

		TIMBE	ER		CONCRETE							
configuration	ho	les fastening Ø5	R _{2/3,k timber}	holes fast	ening Ø13	IN ⁽¹⁾						
on timber	type	ØxL	n _v		Ø	n _H	e _{y,IN}	e _{z,IN}				
		[mm]	[pcs]	[kN]	[mm]	[pcs]	[mm]	[mm]				
TCN200 - TCW200	LBA nails	Ø4,0 x 60	70	56,7	M12	2	38,5	83,5				
TCN200 + TCW200	screws LBS	Ø5,0 x 50	30	66,4								

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fa	stening Ø13	R _{2/3,d concrete}
on concrete	type	ØxL	IN ⁽¹⁾
		[mm]	[kN]
	VIN-FIX 5.8	M12 x 140	27,4
uncracked	HYB-FIX 8.8	M12 x 195	41,5
• uncracked	SKR-CE	12 x 110	17,4
	AB1	M12 x 120	26,1
	VIN-FIX 5.8	M12 x 140	21,1
• cracked	HYB-FIX 8.8	M12 x 195	41,8
	AB1	M12 x 120	17,3
• seismic	HYB-FIX 8.8	M12 x 195	14,0

installation	anchor t	ype	t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8	M12 x 140	15	111	111	120	14	
TCN200 - TCW200	HYB-FIX 8.8	M12 x 195	15	166	166	175	14	200
TCN200 + TCW200	SKR-CE	12 x 110	15	64	95	115	10	200
TCN200 + TCW200	AB1	M12 x 120	15	70	80	85	12	

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

t_{fix} h_{nom} h_{ef} h₁ d₀ fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{\,^{(1)}\,}$ Installation of the anchors in the two internal holes (IN).

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE

TCN240 + TCW240

TIMBER STRENGTH

			CONCRETE							
configuration	ho	les fastening Ø5	R _{2/3,k timber}	holes fast	IN	IN ⁽¹⁾				
on timber	type	ØxL	n _v		Ø	n _H	e _{y,IN}	e _{z,IN}		
		[mm]	[pcs]	[kN]	[mm]	[pcs]	[mm]	[mm]		
TCN240 + TCW240	LBA nails	Ø4,0 x 60	36	70,5	M16	2	39,5	83,5		
TCN240 + TCW240	screws LBS	Ø5,0 x 50	30	82,6						

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fa	stening Ø17	R _{2/3,d concrete}
on concrete	type	ØxL	IN ⁽¹⁾
		[mm]	[kN]
	VIN-FIX 5.8	M16 x 195	57,5
uncracked	HYB-FIX 8.8	M16 x 195	80,4
• uncrackeu	SKR-CE	16 x 130	32,1
	AB1	M16 x 145	39,5
	VIN-FIX 5.8	M16 x 195	32,2
• cracked	HYB-FIX 8.8	M16 x 245	80,4
	AB1	M16 x 145	28,4
• seismic	HYB-FIX 8.8	M16 x 245	23,9

installation	anchor t	ype	t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8	M16 x 195	15	160	160	165	18	200
	HYB-FIX 8.8	M16 x 195	15	160	160	165	18	200
TCN240 + TCW240	HTD-FIX 8.8	M16 x 245	15	210	210	215	10	250
	SKR-CE	16 x 130	15	85	115	145	14	200
	AB1	M16 x 145	15	85	97	105	16	200

 ${\sf INA}\ precut\ threaded\ rod\ complete\ with\ nut\ and\ washer:\ see\ {\sf INA}\ data\ sheet\ at\ www.rothoblaas.com$

t_{fix} h_{nom} h_{ef} h₁ d₀ fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

GENERAL PRINCIPLES:

■ TCW200 - TCW240 | VERIFICATION OF ANCHORS FOR CONCRETE FOR F_{2/3} STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

The calculation eccentricities e_v and e_z refer to installation with WASHER TCW of 2 internal anchors (IN).

The anchor group must be verified for:

 $V_{Sd,x} = F_{2/3,d}$ $M_{Sd,z} = F_{2/3,d} \times e_{y,IN}$ $M_{Sd,y} = F_{2/3,d} \times e_{z,IN}$

■ TCW200 - TCW240 | CONNECTION STIFFNESS FOR STRESS F_{2/3}

EVALUTATION OF SLIP MODULUS K_{2/3,ser}

 \bullet K_{2/3,ser} experimental average value for TITAN joint on CLT (Cross Laminated Timber) according to ETA 11/0496

type	fastening type Ø x L [mm]	n _v [pcs]	K _{2/3,ser} [mm]
TCN200 + TCW200	LBS nails Ø5,0 x 50	30	9600
TCN240 + TCW240	LBS nails Ø5,0 x 50	36	10000

Screws (nails without pre-drilling hole) $\frac{\rho_m^{1.5} \cdot d^{0.8}}{30}$ (EN 1995 §7.1)

type	fastening type Ø x L [mm]	n _v [pcs]	K _{ser} [mm]
TCN200 + TCW200	LBS nails Ø5,0 x 50	30	31192
TCN240 + TCW240	LBS nails Ø5.0 x 50	36	37431

^{*} For steel-to-timber connections the reference regulation indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3)).

■ STRUCTURAL VALUES | TENSILE JOINT F₁ | TIMBER-TO-CONCRETE

TCN200+TCW200

TIMBER STRENGTH

		STEEL				
configuration on timber	holes	R _{1,k timber}	R _{1,k}	steel		
	type	ØxL	n _v			
		[mm]	[pcs]	[kN]	[kN]	Ysteel
TCN200 + TCW200	LBA nails	Ø4,0 x 60	70	57,9	45.7	
	screws LBS	Ø5,0 x 50	30	68,1	45,7	Үмо

	CONCRETE	
holes fast	IN ⁽¹⁾	
Ø	n _H	k _{t//}
[mm]	[pcs]	[mm]
M12	2	1,09

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes faster	holes fastening Ø13				
on concrete	type	Ø x L	IN ⁽¹⁾			
		[mm]	[kN]			
	VIN-FIX 5.8	M12 x 195	21,3			
uncracked	HYB-FIX 8.8	M12 x 195	40,8			
	VIN-FIX 5.8	M12 x 195	16,0			
• cracked	HYB-FIX 5.8	M12 x 195	23,0			
	HYB-FIX 8.8	M12 x 245	30,6			
• seismic	HYB-FIX 8.8	M12 x 245	11,8			

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8	M12 x 195	15	160	160	165	14	200
TCN200 + TCW200	HYB-FIX 5.8 / 8.8	M12 x 195	15	160	160	165	14	200
	HYB-FIX 8.8	M12 x 245	15	210	210	215	14	250

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

t_{fix} h_{nom} h_{ef} h₁ d₀ h_{min} fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

GENERAL PRINCIPLES:

 $^{\left(1\right)}\,$ Installation of the anchors in the two internal holes (IN).

■ STRUCTURAL VALUES | TENSILE JOINT F₁ | TIMBER-TO-CONCRETE

TCN240 + TCW240

TIMBER STRENGTH

	TIMBER			ST	EEL	CONCRETE			
configuration	holes fa	stening Ø5		R _{1,k timber}	R _{1,k}	steel	holes fast	ening Ø17	IN ⁽¹⁾
on timber	type	ØxL	n _v				Ø	n _H	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]
TCN240 + TCW240	LBA nails	Ø4,0 x 60	36	69,5	60.0		M16	2	1,08
TCN240 + TCW240	screws LBS	Ø5,0 x 50	36	81,7	68,9	68,9 γ _{MO}			

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fast	R _{1,d concrete}	
on concrete	type	ØxL	IN ⁽¹⁾
		[mm]	[kN]
• uncracked	VIN-FIX 5.8	M16 x 195	27,4
• uncracked	HYB-FIX 8.8	M16 x 195	45,7
	VIN-FIX 5.8	M16 x 195	15,3
• cracked	HYB-FIX 5.8	M16 x 195	31,2
	HYB-FIX 8.8	M16 x 245	42,2
• seismic	HYB-FIX 8.8	M16 x 245	14,9
• 26121111C		M16 x 330	21,1

installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8	M16 x 195	15	160	160	165	18	200
	HYB-FIX 5.8	M16 x 195	15	160	160	165	18	
TCN240 + TCW200	HYB-FIX 8.8	M16 X 195	15	160	160	165	18	200
		M16 x 245	15	210	210	215	18	250
		M16 x 330	15	295	295	300	18	350

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

h_{nom} h_{ef} h₁ fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

GENERAL PRINCIPLES:

 $^{(1)}$ Installation of the anchors in the two internal holes (IN).

TCW200 - TCW240 | VERIFICATION OF ANCHORS FOR CONCRETE FOR F₁STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (k_t) .

2 internal anchors (IN) must be provided for installation on concrete with WASHER TCW.

The anchor group must be verified for:

$$N_{Sd,z} = 2 \times k_{t//} \times F_{1,d}$$

■ TCW200 - TCW240 | CONNECTION STIFFNESS FOR STRESS F₁

EVALUTATION OF SLIP MODULUS K_{1.ser}

• K_{1,ser} experimental average value for TITAN joint on C24 CLT (Cross Laminated Timber) panels

type	fastening type	n _v	K _{1,ser}	
	Ø x L [mm]	[pcs]	[N/mm]	
TCN200 + TCW200	-	-	-	
TCN240 + TCW240	LBA nails Ø4,0 x 60	36	28455	

Nails (without pre-drilling hole) $\frac{\rho_m^{1.5} \cdot d^{0.8}}{30}$ (EN 1995 § 7.1)

type	fastening type	n _v	K _{ser}
	Ø x L [mm]	[pcs]	[N/mm]
TCN200 + (TCW200)	LBA nails Ø4,0 x 60	30	26093
TCN240 (+ TCW240)	LBA nails Ø4,0 x 60	36	31311

^{*} For steel-to-timber connections the reference standard indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3))

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-TIMBER TTN240

	TIMBER							
configuration		holes fast	ening Ø5		profile ⁽²⁾	R _{2/3,k timber}		
on timber ⁽¹⁾	type	ØxL	n _v	n _H	S			
		[mm]	[pcs]	[pcs]	[mm]	[kN]		
TTN240	LBA nails	Ø4,0 x 60	36	7.0	-	37,9		
	screws LBS	Ø5,0 x 50	30	36		46,7		
TTN240 + XYLOFON	LBA nails	Ø4,0 x 60	36	36	6	24,8		
TIN240 + ATLOPON	screws LBS	Ø5,0 x 50	30	30	0	22,8		
TTN240 . ALADIN STRIPE SOFT	LBA nails	Ø4,0 x 60	7.6	36	5	28,9		
TTN240 + ALADIN STRIPE SOFT	screws LBS	Ø5,0 x 50	36	30	5	27,5		
TTN240 + ALADIN STRIPE EXTRA SOFT	LBA nails	Ø4,0 x 60	7.6	36	7	27,5		
	screws LBS	Ø5,0 x 50	36	36	/	25,8		

■ STRUCTURAL VALUES | TENSILE JOINT F₁ | TIMBER-TO-TIMBER

TTN240

TI	M	R	F	R

		R _{1,k timber}				
	type	ØxL	n _v	n _H		
		[mm]	[pcs]	[pcs]	[kN]	
TTN240	LBA nails	Ø4,0 x 60	36	36	7,4	
11N240	screws LBS	Ø5,0 x 50	30	30	16,2	

NOTES:

⁽¹⁾ The TTN240 angle bracket can be installed in combination with different resilient acoustic profiles inserted below the horizontal flange in full pattern configuration. The strength values in the table are given in ETA-11/0496 and calculated according to "BlaB, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively disregarding the stiffness of the profile.

⁽²⁾ Profile thickness: in the case of ALADIN profile, the calculation took into account the reduced thickness, due to the corrugated section and the consequent crushing induced by the nail head during insertion.

■ STRUCTURAL VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} |TIMBER-TO-TIMBER TTN240

		TIMBER				STEEL	
F ₄		holes fastening Ø5			R _{4,k timber}	R _{4,k steel}	
		type	ØxL	n _v	7	7	
			[mm]	[pcs]	[kN]	[kN]	Ysteel
TTN240	• full pattern	LBA nails	Ø4,0 x 60	36 + 36	23,8	74 4	
		screws LBS	Ø5,0 x 50			31,1	У мо

			TIMBER				STEEL	
		holes fastening Ø5		R _{5,k timber}	R _{5,k steel}			
F ₅		type	ØxL	n _v				
			[mm]	[pcs]	[kN]	[kN]	Ysteel	
TTN240	• full pattern	LBA nails	Ø4,0 x 60	36 + 36	7,3	7.4		
11N24U		screws LBS	Ø5,0 x 50			3,4	У МО	

	TIMBER					STEEL	
F _{4/5} TWO ANGLE BRACKETS		ŀ	holes fastening Ø5 R _{4/5,k timber}			R _{4/5,k steel}	
		LE BRACKETS	type	Ø x L [mm]	n_v [pcs]	[kN]	[kN]
ТТ	TTN240 • full pattern	LBA nails	Ø4,0 x 60	72 + 72	26.7	71.6	
	1 1 N 2 4 U	• full pattern	screws LBS	Ø5,0 x 50	/2 + /2	26,7	31,6

The F₄, F₅, F_{4/5} values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress F_{4/5,d} is applied with eccentricity e \neq 0, the verification for combined loads is required considering the contribution of the additional tensile component:

$$\Delta F_{1,d} = F_{4/5,d} \cdot \frac{e}{b}$$

GENERAL PRINCIPLES:

GENERAL PRINCIPLES:

Characteristic values are consistent with EN 1995-1-1 and in accordance
with ETA-11/0496. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments
(see Chapter 6 ANCORS FOR CONCRETE). The connection design strength
values are obtained from the values on the table as follows:

$$R_{d} = min \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

The coefficients $k_{\text{mod}}, y_{\text{M}}$ and y_{steet} should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- For the calculation process a timber characteristic density $\rho_k=350~\text{kg/m}^3$ has been considered. For higher ρ_k values, the strength on timber side can be converted by the k_{dens} value:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \text{ for } 350 \text{ kg/m}^3 \le \rho_k \le 420 \text{ kg/m}^3$$

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \text{ for LVL with } \rho_k \le 500 \text{ kg/m}^3$$

- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled (α_{qap} =1).

