TITAN S

ANGLE BRACKET FOR SHEAR AND TENSILE FORCES

HOLES FOR HBS PLATE

Fastening with HBS PLATE Ø8 screws using a screwdriver makes installation easy and fast and allows you to work safely and comfortably.

85 kN SHEAR

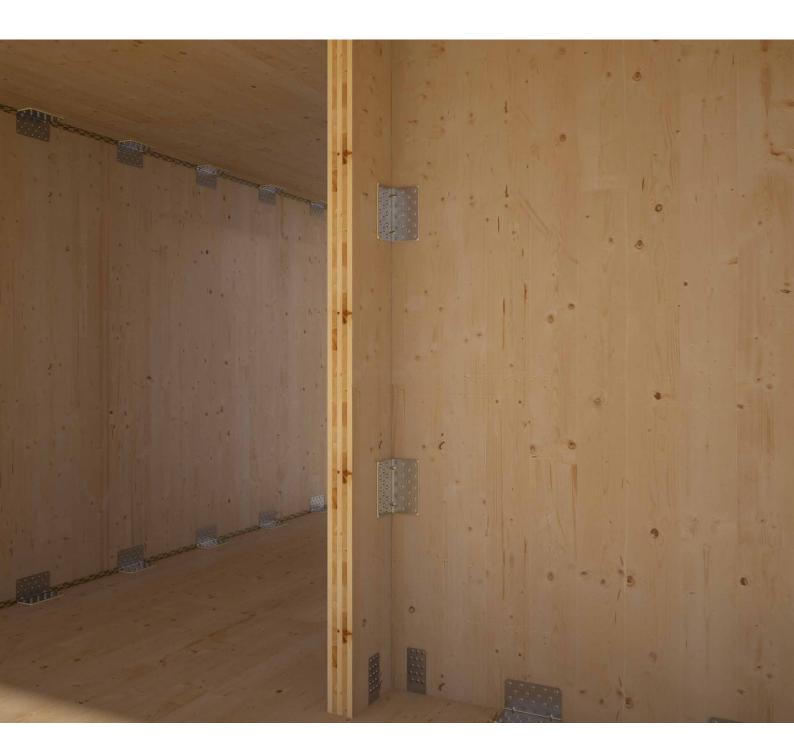
Exceptional shear strengths. Up to $85.9 \, kN$ on concrete (with TCW washer). Up to $60.0 \, kN$ on timber.

75 kN TENSILE

On concrete, the TCS angle bracket with TCW washer provides excellent tensile strength. $R_{1,k}$ up to 75,9 kN characteristic values.

CHARACTERISTICS

FOCUS	shear and tensile joints
HEIGHT	130 mm
THICKNESS	3,0 mm
FASTENERS	HBS PLATE, VIN-FIX, HYB-FIX, SKR, AB1


MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

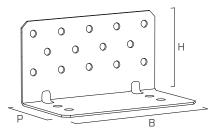
FIELDS OF USE

Timber-to-concrete and timber-to-timber shear tensile joints for timber panels and timber stringers

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

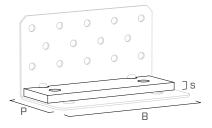
COMFORT

The angle brackets fastening using a reduced number of HBS PLATE Ø8 screws makes installation faster and increases operator comfort.

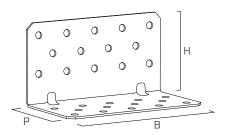

ALL DIRECTIONS

Certified shear ($F_{2,3}$), tensile (F_1) and tilting ($F_{4,5}$) strengths. Certified values also with interposed acoustic profiles.

CODES AND DIMENSIONS


TITAN S - TCS | CONCRETE-TO-TIMBER JOINTS

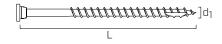
CODE	В	Р	Н	holes	n _v Ø11	s		pcs
	[mm]	[mm]	[mm]	[mm]	[pcs]	[mm]	F 10 10 10 10 10 10 10 10 10 10 10 10 10	
TCS240	240	123	130	4 x Ø17	14	3	•	10


TITAN WASHER - TCW240 | CONCRETE-TO-TIMBER JOINTS

CODE	В	Р	s	holes	holes	
	[mm]	[mm]	[mm]	[mm]	E TO B	
TCW240	230	73	12	Ø18	•	1

TITAN S - TTS | TIMBER-TO-TIMBER JOINTS

CODE	В	Р	Н	n _H Ø11	n _v Ø11	s		pcs
	[mm]	[mm]	[mm]	[pcs]	[pcs]	[mm]		
TTS240	240	130	130	14	14	3	•	10

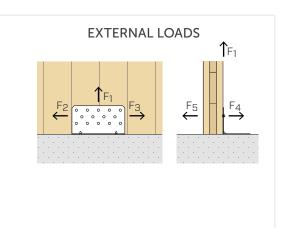

ACOUSTIC PROFILE | TIMBER-TO-TIMBER JOINTS

type	В	Р	S		pcs
		[mm]	[mm]		
xylofon plate	240 mm	120	6	•	10
soft	50 m ^(*)	95	5	•	10
extra soft	50 m ^(*)	115	7	•	10
	xylofon plate	xylofon plate 240 mm soft 50 m(*)	xylofon plate 240 mm 120 soft 50 m(*) 95	[mm] [mm] xylofon plate 240 mm 120 6 soft 50 m(*) 95 5	xylofon plate 240 mm 120 6 • soft 50 m(*) 95 5 •

HBS PLATE

CODE	d_1	L	b	TX	pcs
	[mm]	[mm]	[mm]		
HBSP880	8	80	55	TX40	100

MATERIAL AND DURABILITY

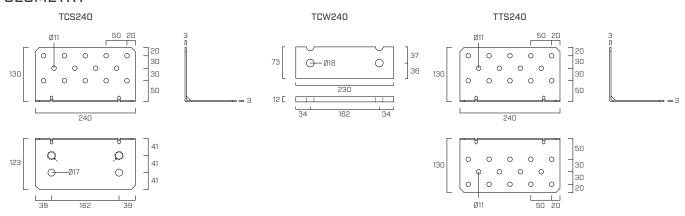

TITAN S: carbon steel DX51D+Z275.

TITAN WASHER: S235 bright zinc plated carbon steel. To be used in service classes 1 and 2 (EN 1995-1-1).

XYLOFON PLATE: 35-shore polyurethane compound. ALADIN STRIPE: compact EPDM.

FIELD OF USE

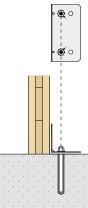
- Timber to concrete joints
- Timber-to-timber joints
- Timber-to-steel joints


 $^{^{(*)}}$ To be cut on site

ADDITIONAL PRODUCTS - FASTENING

type	description		d	support
			[mm]	
HBS PLATE	pan head screw	D	8	2)))))
AB1	mechanical anchor		16	
SKR	screw anchor		16	然,是
VIN-FIX(*)	chemical anchor		M16	
HYB-FIX	chemical anchor		M16	

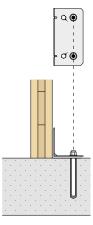
 $^{^{(*)}}$ For more information, see the data sheet available at www.rothoblaas.com


GEOMETRY

INSTALLATION ON CONCRETE

To fix **TITAN TCS** angle bracket to the concrete foundation, **2 anchors** must be used, according to one of the following installation configurations, according to the acting stress.

IDEAL INSTALLATION

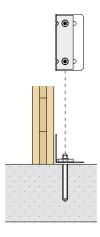


2 anchors positioned in the INTERNAL HOLES (IN) (identified by a mark on the product)

Reduced stress on the anchor (minimum $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{k}_{\mathbf{t}}$ eccentricity)

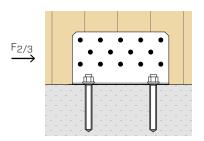
Optimized connection strength

ALTERNATIVE INSTALLATION



2 anchors placed in the EXTERNAL HOLES (**OUT**) (e.g. interaction between the anchor and the concrete support reinforcement)

Maximum stress on the anchor (maximum e_y and k_t eccentricity)


Reduced connection strength

INSTALLATION WITH WASHER

The WASHER TCW must be fastened by means of 2 anchors positioned in the INTERNAL HOLES (IN)

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE TCS240

TIMBER STRENGTH

		TIMBE	R		CONCRETE			
configuration on timber	ŀ	noles fastening Ø11		R _{2/3,k timber}	holes fast	ening Ø17	IN ⁽¹⁾	OUT ⁽²⁾
	type	ØxL	n _v		Ø	n _H	e _{y,IN}	e _{y,OUT}
		[mm]	[pcs]	[kN]	[mm]	[pcs]	[mm]	[mm]
TCS240	HBS PLATE	Ø8,0 x 80	14	70,3	M16	2	39,5	80,5

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

configuration	holes faster	ning Ø17	R _{2/3,d}	concrete
on concrete	type	ØxL	IN ⁽¹⁾	OUT ⁽²⁾
		[mm]	[kN]	[kN]
	VIN-FIX 5.8	M16 x 160	67,2	52,9
• uncracked	VIN-FIX 8.8	M16 x 160	90,1	70,9
• uncracked	SKR-CE	16 x 130	67,4	53,1
	AB1	M16 x 145	67,4	53,1
	VIN-FIX 5.8 / 8.8	M16 x 160	55,0	43,2
• cracked	SKR-CE	16 x 130	55,0	43,2
	AB1	M16 x 145	55,0	43,2
• seismic	HYB-FIX 8.8	M16 x 195	35,2	27,7
• seisiliic	HTD-FIX 0.0	M16 x 245	46,9	37,0

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8 / 8.8	M16 x 160	3	134	134	140	18	200
	LIVE FIX O O	M16 x 195	3	164	164	170	18	
TCS240	HYB-FIX 8.8	M16 x 245	3	219	219	225	18	260
	SKR-CE	16 x 130	3	85	127	150	14	200
	AB1	M16 x 145	3	85	97	105	16	200

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

t_{fix} h_{nom} h_{ef} h₁ d₀ fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{\,^{(2)}\,}$ Installation of the anchors in external holes (OUT).

 $^{^{(1)}}$ Installation of the anchors in the two internal holes (IN).

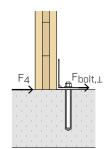
■ TCS240 | VERIFICATION OF CONCRETE ANCHORS FOR STRESS | F_{2/3}

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

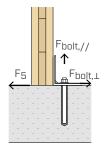
E_y calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).

The anchor group must be verified for:

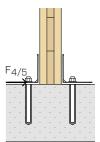
 $V_{Sd,x} = F_{2/3,d}$


 $M_{Sd,z} = F_{2/3,d} x e_{y,IN/OUT}$

■ STRUCTURAL VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} | TIMBER-TO-CONCRETE

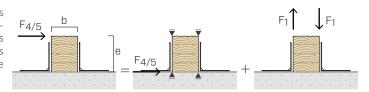

TCS240

		TIMBER				STEEL		CONCRETE			
	holes fastening Ø11			R _{4,k timber}	R _{4,k steel}		holes fastening		IN ⁽¹⁾		
F ₄	type	ØxL	n_{ν}				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}	
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]			
TCS240	HBS PLATE	Ø8,0 x 80	14	21,1	18,1	У мо	M16	2	0,5	-	


The group of 2 anchors must be verified for: $345rV_{Sd,y} = 2 \times k_{t\perp} \times F_{4,d}$

	TIMBER				STEEL		CONCRETE			
	holes fastening Ø11			R _{5,k timber}	R _{5,k steel}		holes fastening		IN ⁽¹⁾	
F ₅	type	ØxL	n_{ν}				Ø	n _H	$\mathbf{k}_{t_{\perp}}$	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
TCS240	HBS PLATE	Ø8,0 x 80	14	17,1	4,3	У мо	M16	2	0,5	0,36

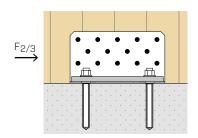
The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t,\perp} \times F_{5,d}$; $N_{Sd,z} = 2 \times k_{t/\!/} \times F_{5,d}$


	TIMBER				STI	EEL	CONCRETE			
F _{4/5}	holes fastening Ø11		R _{4/5,k timber}	R _{4/5,k steel}		holes fastening		IN ⁽¹⁾		
TWO ANGLE	type	ØxL	n _v				Ø	n _H	k _{t⊥}	k _{t//}
BRACKETS		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
TCS240	HBS PLATE	Ø8,0 x 80	14 + 14	27,4	18,8	Υмо	M16	2 + 2	0,39	0,08

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t,L} \times F_{4/5,d}$; $N_{Sd,z} = 2 \times k_{t//} \times F_{4/5,d}$

The $F_4,\ F_5,\ F_{4/5}$ values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress $F_{4/5,d}$ is applied with eccentricity e≠0, the verification for combined loads is required considering the contribution of the additional tensile component:

$$\Delta F_{1,d} = F_{4/5,d} \cdot \frac{\mathsf{e}}{b}$$


GENERAL PRINCIPLES:

For the general principles of calculation, see page 13.

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE

TCS240 + TCW240

TIMBER STRENGTH

		TIN	CONCRETE					
configuration		holes fastening Ø11 R _{2/3,k timber}			holes fast	ening Ø17	IN ⁽¹⁾	
on timber	type	ØxL [mm]	n_v [pcs]	[kN]	Ø [mm]	n _H [pcs]	e _{y,IN} [mm]	e _{z,IN} [mm]
TCS240 + TCW240	HBS PLATE	Ø8,0 x 80	14	85,9	M16	2	39,5	78,5

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fast	ening Ø17	R _{2/3,d concrete}
on concrete	type	ØxL [mm]	IN⁽¹⁾ [kN]
	VIN-FIX 5.8	M16 x 195	58,5
	VIN-FIX 8.8	M16 x 195	60,9
• uncracked	HYB-FIX 8.8	M16 x 195	81,4
	SKR-CE	16 x 130	33,9
	AB1	M16 x 145	41,6
	VIN-FIX 5.8 / 8.8	M16 x 195	33,6
• cracked	HYB-FIX 8.8	M16 x 245	81,4
	AB1	M16 x 145	29,6
• seismic	HYB-FIX 8.8	M16 x 245	24,7

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8 / 8.8	M16 x 195	15	160	160	165	18		
	LIVE FIX O O	M16 x 195	15	160	160	165	18	200	
TCS240 + TCW240	HYB-FIX 8.8	M16 x 245	15	210	210	215	18	250	
	SKR-CE	16 x 130	15	85	115	145	14	200	
	AB1 M16 x 145		15	85	97	105	16	200	

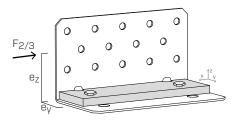
INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

t_{fix} h_{nom} h_{ef} h₁ d₀ h_{min} fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{^{(2)}}$ Installation of the anchors in external holes (OUT).

 $^{\,^{(1)}\,}$ Installation of the anchors in the two internal holes (IN).


■ TCW240 | VERIFICATION OF CONCRETE ANCHORS FOR STRESS F_{2/3}

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

The calculation eccentricities e_y and e_z refer to installation with WASHER TCW of 2 internal anchors (IN).

The anchor group must be verified for:

 $V_{Sd,x} = F_{2/3,d}$ $M_{Sd,z} = F_{2/3,d} \times e_{y,IN}$ $M_{Sd,y} = F_{2/3,d} \times e_{z,IN}$

■ TCS240 - TCW240 | CONNECTION STIFFNESS FOR STRESS | F_{2/3}

EVALUTATION OF SLIP MODULUS K_{2/3,ser}

- $K_{2/3,ser}$ experimental average value for TITAN joint on CLT (Cross Laminated Timber) according to ETA 11/0496

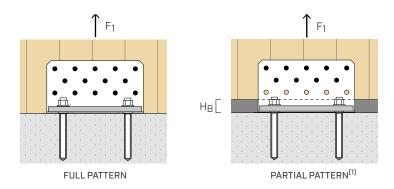
type	fastening type Ø x L [mm]	n _v [pcs]	K _{2/3,ser} [N/mm]
TCS240	HBS PLATE Ø8,0 x 80	14	8200
TCS240 + TCW240	HBS PLATE Ø8,0 x 80	14	8600

• K_{ser} according to EN 1995-1-1 for timber-to-timber joint screws* C24/GL24h

Screws (nails without pre-drilling hole) $\frac{\rho_m^{1.5} \cdot d^{0.8}}{30}$ (EN 1995 § 7.1)

type	fastening type	n _v	K _{ser}
	Ø x L [mm]	[pcs]	[N/mm]
TCS240 (+ TCW240)	HBS PLATE Ø8,0 x 80	14	21201

 $^{^*}$ For steel-to-timber connections the reference standard indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3)).


GENERAL PRINCIPLES:

For the general principles of calculation, see page 13.

■ STRUCTURAL VALUES | TENSILE JOINT F₁ | TIMBER-TO-CONCRETE

TCS240 + TCW240

TIMBER STRENGTH

	TIMBER				STEEL		CONCRETE				
configuration on timber		holes fast		stening Ø11 R _{1,k timber}		R _{1,k steel}		holes fastening Ø17		IN ⁽²⁾	
		type	ØxL	n _v				Ø	n _H	k _{t//}	
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]	
TCS240 + TCW240	full pattern	HBS PLATE	Ø8,0 x 80	14	-	75,9		M16	2	1.09	
1C5240 + 1CW240	partial pattern	HBS PLATE	Ø8,0 x 80	9	33,9	75,9	Үмо	IMITO	2	1,08	

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fast	holes fastening Ø17				
on concrete	type	Ø x L [mm]	IN⁽²⁾ [kN]			
• uncracked	VIN-FIX 5.8	M16 x 195	27,4			
	HYB-FIX 8.8	M16 x 195	45,7			
	VIN-FIX 5.8	M16 x 195	15,3			
• cracked	HYB-FIX 5.8	M16 x 195	31,2			
	HYB-FIX 8.8	M16 x 245	42,2			
- aniomia	HYB-FIX 8.8	M16 x 245	14,9			
• seismic	ΠΙΒ-ΓΙΑ δ.δ	M16 x 330	21,1			

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8	M16 x 195	15	160	160	165	18	200	
	HYB-FIX 5.8	M16 x 195	15	160	160	165	18	200	
TCS240 + TCW240		M16 x 195	15	160	160	165	18	200	
	HYB-FIX 8.8	M16 x 245	15	210	210	215	18	250	
		M16 x 330	15	295	295	300	18	350	

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com

t_{fix} h_{nom} h_{ef} h₁ d₀

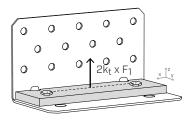
h_{min}

fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{^{(1)}}$ In case of design requirements such as F_1 stress of different value or presence of an H_B intermediate layer between the wall and the supporting surface, partial fastening with $H_B \leq 32$ mm can be adopted for application on CLT panel.

⁽²⁾ Installation of the anchors in the two internal holes (IN).


■ TCW200 - TCW240 | ANCHORS FOR CONCRETE STRESS VERIFICATION | F₁

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (k_t) .

2 internal anchors (IN) must be provided for installation on concrete with WASHER TCW.

The anchor group must be verified for:

$$N_{Sd,z} = 2 \times k_{t//} \times F_{1,d}$$

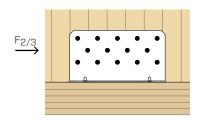
■ TCW240 | CONNECTION STIFFNESS FOR STRESS F₁

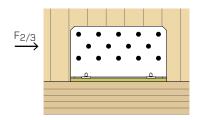
EVALUTATION OF SLIP MODULUS K_{1,ser}

- $\rm K_{1,ser}$ experimental average for TITAN connection on CLT (Cross Laminated Timber) according to ETA 11/0496

type	fastening type	n _v	K _{1,ser}
	Ø x L [mm]	[pcs]	[N/mm]
TCS240 + TCW240	HBS PLATE Ø8,0 x 80	14	11500

• K_{ser} according to EN 1995-1-1 for timber-to-timber joint screws* C24/GL24h


Screws (nails without pre-drilling hole) $\frac{\rho_m^{1.5} \cdot d^{0.8}}{30}$ (EN 1995 § 7.1)


type	fastening type Ø x L [mm]	n _v [pcs]	K _{ser} [N/mm]
TCS240 + TCW240	HBS PLATE Ø8,0 x 80	14	21201

^{*} For steel-to-timber connections the reference standard indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3)).

■ STRUCTURAL VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-TIMBER TTS240

	TIMBER									
configuration		holes faste	profile ⁽²⁾	R _{2/3,k timber}						
on timber ⁽¹⁾	type	ØxL	n _v	n _H	s					
		[mm]	[pcs]	[pcs]	[mm]	[kN]				
TTS240	HBS PLATE	Ø8,0 x 80	14	14	-	60,0				
TTS240 + XYLOFON					6	12,5				
TTS240 + ALADIN STRIPE SOFT	HBS PLATE	Ø8,0 x 80	14	14	5	14,7				
TTS240 + ALADIN STRIPE EXTRA SOFT					7	13,9				

■ TTS240 | CONNECTION STIFFNESS FOR STRESS | F_{2/3}

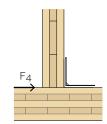
EVALUTATION OF SLIP MODULUS K_{2/3,ser}

 \bullet $\;$ K $_{2/3,ser}$ experimental average value for TITAN joint on CLT (Cross Laminated Timber) according to ETA 11/0496

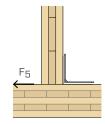
type	fastening type	n _v	n _H	K _{2/3,ser}
	Ø x L [mm]	[pcs]	[pcs]	[N/mm]
TTS240	HBS PLATE Ø8,0 x 80	14	14	5600

 $\bullet \qquad \text{K}_{\text{ser}} \text{ according to EN 1995-1-1 for timber-to-timber joint screws* C24/GL24h} \\$

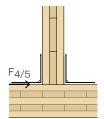
Screws (nails without pre-drilling hole) $\frac{\rho_m^{1.5} \cdot d^{0.8}}{30}$ (EN 1995 § 7.1)


type	fastening type	n _v	K _{ser}	
	Ø x L [mm]	[pcs]	[N/mm]	
TTS240	HBS PLATE screws Ø8,0 x 80	14	21201	

^{*} For steel-to-timber connections the reference standard indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3)).



■ STRUCTURAL VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} |TIMBER-TO-TIMBER TTS240


	TIMBER				STEEL	
	holes fastening Ø11			R _{4,k timber}	R _{4,k steel}	
F ₄	type	ØxL	n			
		[mm]	[pcs]	[kN]	[kN]	Ysteel
TTS240	HBS PLATE	Ø8,0 x 80	14 + 14	20,7	20,9	У мо

	TIMBER				STEEL	
	holes fastening Ø11		R _{5,k timber}	R _{5,k steel}		
F ₅	type	ØxL	n			
		[mm]	[pcs]	[kN]	[kN]	Ysteel
TTS240	HBS PLATE	Ø8,0 x 80	14 + 14	16,8	4,2	У мо

	TIMBER				STEEL	
F _{4/5}	holes fastening Ø11			R _{4/5,k timber}	R _{4/5,k steel}	
TWO ANGLE BRACKETS	type	Ø x L [mm]	n _v [pcs]	[kN]	[kN]	V
DRAGRETS		[111111]	[bc3]	[[(] 4]	[[(] 4]	Ysteel
TTS240	HBS PLATE	Ø8,0 x 80	28 + 28	25,2	23,4	У мо

The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating).

NOTES:

- (1) The TTS240 angle bracket can be installed in combination with different resilient acoustic profiles inserted below the horizontal flange. The strength values in the table are given in ETA 11/0496 and calculated according to "Blaß, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively disregarding the stiffness of the profile.
- (2) Profile thickness: in the case of ALADIN profile, the calculation took into account the reduced thickness of the profile itself, due to the corrugated section and the consequent crushing induced by the nail head during insertion.

GENERAL PRINCIPLES:

For the general principles of calculation, see page 13.

GENERAL PRINCIPLES:

Characteristic values are consistent with EN 1995-1-1 and in accordance
with ETA-11/0496. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments
(see Chapter 6 ANCORS FOR CONCRETE). The connection design strength
values are obtained from the values on the table as follows:

$$R_{d} = min \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

The coefficients $k_{\text{mod}}, y_{\text{M}}$ and y_{steel} should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- For the calculation process a timber characteristic density $\rho_k=350~kg/m^3$ has been considered. For higher ρ_k values, the strength on timber side can be converted by the k_{dens} value:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$$
 for 350 kg/m³ $\leq \rho_k \leq 420 \text{ kg/m}^3$
 $k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$ for LVL with $\rho_k \leq 500 \text{ kg/m}^3$

- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled ($\alpha_{\rm gap} = 1$).

