PLATES FOR TENSILE LDADS

TWO VERSIONS

WHT PLATE 440, ideal for framed structures (platform frame); WHT PLATE 540, ideal for CLT panel structures (Cross Laminated Timber).

PLANAR JOINTS
Ideal for realizing distributed connections under tensile stress between the CLT (Cross Laminated Timber) panels and framed structures (platform frame) to and the concrete understructure.

QUALITY

The high tensile strength allows to optimize the number of plates installed, ensuring remarkable time saving.
Values calculated and certified according to CE marking.

CHARACTERISTICS

FOCUS	tensile joints on concrete
HEIGHT	$440 \mid 540 \mathrm{~mm}$
THICKNESS	$3,0 \mathrm{~mm}$
FASTENERS	LBA, LBS, SKR, VIN-FIX, HYB-FIX

MATERIAL

Bright zinc plated carbon steel, two dimensional perforated plate.

FIELDS OF USE

Timber-to-concrete shear joints for panels and timber struts

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

TIMBER-TO-CDNCRETE

Beside its natural function, it is ideal for solving situations where the transfer of tensile loads from timber to concrete is required.

MULTIPURPOSE

Pre-calculated partial nailing can be used if there is a varying amount of stress or a levelling layer.

- CODES ANDDIMENSIDNS

WHT PLATE C

CODE	B	H	holes	$\mathrm{n}_{\mathrm{v}} \varnothing 5$	s	\ddots	pcs
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	pcs	$[\mathrm{mm}]$	\ddots	
WHTPLATE440	60	440	$\varnothing 17$	18	3	\bullet	10
WHTPLATE540	140	540	$\varnothing 17$	50	3	\bullet	10

MATERIAL AND DURABILITY

EXTERNAL LOADS
WHT PLATE C: carbon steel DX51D+Z275.
To be used in service classes 1 and 2 (EN 1995-1-1).

FIELD OF USE

- Timber to concrete joints
- OSB to concrete joints

- Timber-to-steel joints
- ADDITIONAL PRODUCTS - FASTENING

type	description		$\begin{gathered} \mathbf{d} \\ {[\mathrm{mm}]} \end{gathered}$	support
LBA	Anker nail		4	ए111
LBS	screw for plates	(-xw1m\%	5	एग11
AB1	mechanical anchor		16	F9\%
VIN-FIX ${ }^{(*)}$	chemical anchor		M16	
HYB-FIX	chemical anchor		M16	
KOS	bolt	\square	M16	V)III

${ }^{\text {(*) }}$ For more information, see the data sheet available at www.rothoblaas.com

GEDMETRY

INSTALLATION

TIMBER minimum distances			nails	screws
LBA Ø4	LBS Ø5			
C/GL	$a_{4, c}$	$[\mathrm{~mm}]$	≥ 20	≥ 25
CLT	$a_{3, t}$	$[\mathrm{~mm}]$	≥ 60	≥ 75
	$a_{4, c}$	$[\mathrm{~mm}]$	≥ 12	$\geq 12,5$
	$a_{3, t}$	$[\mathrm{~mm}]$	≥ 40	≥ 30

- C/GL: minimum distances for solid timber or glulam consistent with EN 1995-1-1 according to ETA considering a timber density $\rho_{k} \leq 420 \mathrm{~kg} / \mathrm{m}^{3}$
- CLT: minimum distances for Cross Laminated Timber according to ONORM EN 1995-1-1 (Annex K) for nails and ETA 11/0030 for screws

WHTPLATE440 INSTALLATIDN

The WHT PLATE 440 can be used for different construction systems (CLT/frame) and ground connection systems (with/without platform beam, with/without levelling layer). Depending on the presence and dimension of H_{B} of the intermediate layer, in accordance with the minimum distances of the timber and concrete fasteners, the WHT PLATE 440 must be positioned in way that the anchor is at a distance from the concrete edge:
$130 \mathrm{~mm} \leq \mathrm{c}_{\mathrm{x}} \leq 200 \mathrm{~mm}$.

WHTPLATE540 INSTALLATION

In the presence of design requirements such as varying stress values or the presence of a levelling layer between the wall and the support surface, it is possible to use pre-calculated and optimised partial nailing in order to influence the effective $n_{\text {ef }}$ number of fastenings on timber. Alternative nailings are possible in accordance with the minimum distances for the connectors.

STRUCTURAL VALUES |TENSILE JOINT |TIMBER-TO-CONCRETE WHTPLATE440

MINIMUM CONCRETE THICKNESS $h_{\min } \geq 200 \mathrm{~mm}$

	$\mathrm{R}_{1, \mathrm{~K}}$ TIMBER				$\mathrm{R}_{1, \mathrm{~K}} \text { STEEL }$ $\mathrm{R}_{1, \mathrm{k} \text { steel }}$		$\mathrm{R}_{1, \mathrm{~d}}$ CONCRETE					
configuration	holes type	astening $\varnothing 5$ $\emptyset \times L$ [mm]	$\begin{gathered} \mathrm{n}_{\mathrm{v}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\mathrm{R}_{1, k \text { timber }}$ [kN]	$\mathrm{R}_{1,1}$ [kN]	teel $\gamma_{\text {steel }}$	$\begin{gathered} \mathrm{R}_{1, \text { d uncrac }} \\ \text { VIN-FIX } 5.8 \\ \emptyset \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	[kN]	$\begin{gathered} \mathrm{R}_{1, \mathrm{~d} \text { crack }} \\ \text { VIN-FIX } 5.8 \\ \emptyset \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	[kN]	$\begin{aligned} & \mathrm{R}_{1, \mathrm{~d} \text { seismi }} \\ & \text { HYB-FIX } 8.8 \\ & \emptyset \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	[kN]
- $c_{2 \text { min }}=130 \mathrm{~mm}$ - total fastening - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	18	35,0	34,8	$\gamma_{M 2}$	M16 x 195	22,6	M16 $\times 195$	16,0	M16 $\times 195$	16,0
	screws LBS	$\varnothing 5,0 \times 60$	18	31,8								
- $C_{2 \text { max }}=200 \mathrm{~mm}$ - total fastening - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	18	35,0	34,8	$Y_{M 2}$	M16 x 195	32,3	M16 $\times 195$	22,9	M16 $\times 195$	22,9
	screws LBS	$\varnothing 5,0 \times 60$	$15^{(1)}$	27,5								

MINIMUM CONCRETE THICKNESS $h_{\min } \geq 150 \mathrm{~mm}$

	$\mathrm{R}_{1, \mathrm{~K}}$ TIMBER				$\mathrm{R}_{1, \mathrm{~K}} \text { STEEL }$ $\mathrm{R}_{1, \mathrm{k} \text { steel }}$		$\mathrm{R}_{1, \mathrm{~d}}$ CONCRETE					
configuration	holes type	astening $\varnothing 5$ $\varnothing x L$ [mm]	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$	$\mathrm{R}_{1, \mathrm{k} \text { timber }}$ [kN]	$\mathrm{R}_{1, \mathrm{l}}$ [kN]	teel $\gamma_{\text {steel }}$	$\begin{gathered} \text { R1,d uncracke } \\ \text { VIN-FIX } 5.8 \\ \emptyset \text { x L } \\ {[\mathrm{mm}]} \end{gathered}$	[kN]	$\begin{gathered} \mathrm{R}_{1, \mathrm{~d} \text { crack }} \\ \text { VIN-FIX } 5.8 \\ \emptyset \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	[kN]	$\begin{aligned} & \mathrm{R}_{1, \mathrm{~d} \text { seismi }} \\ & \text { HYB-FIX } 8.8 \\ & \emptyset \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	[kN]
- $c_{2 \text { min }}=130 \mathrm{~mm}$ - total fastening - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	18	35,0	34,8	$\gamma_{\text {M2 }}$	M16 $\times 130$	18,2	M16 $\times 130$	12,9	M16 x 130	12,9
	screws LBS	$\varnothing 5,0 \times 60$	18	31,8								
- $c_{2 \text { max }}=200 \mathrm{~mm}$ - total fastening - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	18	35,0	34,8	$\gamma_{\text {M2 }}$	M16 x 130	26,0	M16 $\times 130$	18,4	M16 x 130	18,4
	screws LBS	$\varnothing 5,0 \times 60$	$15^{(1)}$	27,5								

[^0]. STRUCTURAL VALUES|TENSILEJOINT|TIMBER-TO-CDNCRETE WHTPLATE540

PARTIAL 15 FASTENERS
$\uparrow_{F_{1}}$

MINIMUM CONCRETE THICKNESS $\mathrm{h}_{\text {min }} \geq 200 \mathrm{~mm}$

	$\mathrm{R}_{1, \mathrm{~K}}$ TIMBER				$\mathrm{R}_{1, \mathrm{~K}}$ STEEL		$\mathrm{R}_{1, \mathrm{~d}}$ CONCRETE ${ }^{\text {[3] }}$					
configuration	holes type	fastening Ø5 $\varnothing x L$ [mm]	$\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\mathrm{R}_{1, \mathrm{k} \text { timber }}$	[kN]	stee! $\gamma_{\text {steel }}$	$\begin{gathered} \mathrm{R}_{1, \mathrm{~d} \text { uncrack }} \\ \text { VIN-FIX } 5.8 \\ \emptyset \mathrm{xL} \\ {[\mathrm{~mm}]} \end{gathered}$	[kN]	$\begin{gathered} \mathrm{R}_{1, \mathrm{~d} \text { cracke }} \\ \text { VIN-FIX } 5.8 \\ \emptyset \mathrm{xL} \\ {[\mathrm{~mm}]} \end{gathered}$	[kN]	$\begin{aligned} & \mathrm{R}_{1, \mathrm{~d} \text { seismic }} \\ & \text { HYB-FIX } 8.8 \\ & \emptyset \mathrm{xL} \\ & {[\mathrm{~mm}]} \end{aligned}$	$[\mathrm{kN}]$
- total fastening - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	50	83.5	70.6	$Y_{M 2}$	M16 $\times 195$	44,1	M16 $\times 195$	31,3	M16 $\times 195$	26,6
	screws LBS	$\varnothing 5,0 \times 60$	50	81.6								
- partial fastening ${ }^{(2)}$ 30 fasteners - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	30	70,8								
	screws LBS	$\varnothing 5,0 \times 60$	30	69.9								
- partial fastening ${ }^{(2)}$ 15 fasteners - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	15	35,4								
	screws LBS	$\varnothing 5,0 \times 60$	15	35,0								

MINIMUM CONCRETE THICKNESS $h_{\text {min }} \geq 150 \mathrm{~mm}$

	$\mathrm{R}_{1, \mathrm{~K}}$ TIMBER				$\mathrm{R}_{1, \mathrm{~K}}$ STEEL		$\mathrm{R}_{1, \mathrm{~d}}$ CONCRETE ${ }^{(3)}$					
configuration	holes type	fastening $\varnothing 5$ $\emptyset x L$ [mm]	$\begin{gathered} \mathbf{n}_{\mathrm{v}} \\ {[\mathrm{pcs}]} \end{gathered}$	$\mathrm{R}_{1, \mathrm{k} \text { timber }}$	$\begin{array}{r} \mathrm{R}_{1,}, \\ {[\mathrm{kN}]} \end{array}$	steel $\gamma_{\text {steel }}$	$\begin{gathered} \mathrm{R}_{1, \mathrm{~d} \text { uncrack }} \\ \text { VIN-FIX } 5.8 \\ \varnothing \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	[kN]	$\begin{aligned} & \mathrm{R}_{1, \mathrm{~d} \text { cracked }} \\ & \mathrm{VIN} \text {-FIX5.8 } \\ & \varnothing \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	[kN]	$\begin{aligned} & \mathrm{R}_{1, \mathrm{~d} \text { seismic }} \\ & \text { HYB-FIX } 8.8 \\ & \emptyset \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	[kN]
- total fastening - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	50	83.5	70.6	$\gamma_{\text {M2 }}$	M16 $\times 130$	35,9	M16 $\times 130$	25,4	M16 $\times 130$	21,6
	screws LBS	$\varnothing 5,0 \times 60$	50	81.6								
- partial fastening ${ }^{(2)}$ 30 fasteners - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	30	70,8								
	screws LBS	$\varnothing 5,0 \times 60$	30	69.9								
- partial fastening ${ }^{(2)}$ 15 fasteners - 2 anchors M16	LBA nails	$\varnothing 4,0 \times 60$	15	35,4								
	screws LBS	$\varnothing 5,0 \times 60$	15	35,0								

NOTES:

(2) In the case of configurations with partial nailing, the strength values in the table are valid for the installation of fasteners in timber in accordance with $a_{1}>10 d\left(n_{\text {ef }}=n\right)$
(3) The concrete strength values are valid if the assembly notches of the WHTPLATE540 plate are positioned at the timber-to-concrete interface ($\mathrm{C}_{\mathrm{X}}=260 \mathrm{~mm}$).

CHEMICAL ANCHORS INSTALLATION PARAMETERS[1]

anchor type		$\mathrm{t}_{\text {fix }}$	$\mathrm{h}_{\text {nom }}=\mathrm{h}_{\text {ef }}$	h_{1}	d_{0}	$\mathrm{h}_{\text {min }}$
type	$\varnothing \times \mathrm{L}$ [mm]	[mm]	[mm]	[mm]	[mm]	[mm]
VIN-FIX 5.8	$\mathrm{M} 16 \times \min 130$	3	110	115	18	150
	M16 195	3	164	170		200
HYB-FIX 8.8	$\mathrm{M} 16 \times \min 130$	3	110	115	18	150
	M16 195	3	164	170		200

INA precut threaded rod complete with nut and washer: see INA data sheet at www.rothoblaas.com MGS threaded rod class 8.8 to be cut to length: see MGS data sheet at www.rothoblaas.com.

DIMENSIDNING OF ALTERNATIVE ANCHORS

Fastening elements to the concrete through anchors not listed in the table, shall be verified according to the load acting on the anchor and evaluable through the coefficients $\mathrm{kt}_{\mathrm{t} \perp}$. The lateral shear load acting on the anchor can be obtained as follows:
$F_{b o l t \perp, d}=k_{t \perp} \cdot F_{1, d}$
$k_{t \perp} \quad$ coefficient of eccentricity
$F_{1} \quad$ tensile stress acting on the WHT PLATE

	$\mathbf{k}_{\mathrm{t} \perp}$
WHTPLATE440	1,00
WHTPLATE540	0,50

The anchor check is satisfied if the design tensile strength, obtained considering the boundary effects, is greater than the design external load: $R_{\text {bolt } \perp, d} \geq F_{\text {bolt } \perp, d}$.

NOTES FOR SEISMIC DESIGN

Particular attention has to be paid to the "capacity design" applied at different scale levels: the global structure and the connection system. Experimentally the ultimate strength of the LBA nail (and of the LBS screw) is notably larger than the characteristic strength evaluated according to EN 1995.
E.g. LBA nail $\varnothing 4 \times 60 \mathrm{~mm}: \mathrm{R}_{\mathrm{v}, \mathrm{k}}=2,8-3,6 \mathrm{kN}$ by experimental tests (variable according to the type of timber and plate thickness).

Experimental data derive from tests carried out within the Seismic-Rev research project and are reported in the scientific report: "Connection systems for timber buildings: experimental campaign to characterize stiffness, strength and ductility" (DICAM - Department of Civil, Environmental and Mechanical Engineering - UniTN).

NOTES:

${ }^{(1)}$ Valid for the strength values shown in the table

GENERAL PRINCIPLES:

- Characteristic values according to EN 1995-1-1. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments.
The connection design strength value is obtained from the values on the table as follows:

$$
R_{d}=\min \left\{\begin{array}{l}
\frac{R_{k, \text { timber }} \cdot k_{\text {mod }}}{\gamma_{M}} \\
\frac{R_{k, \text { steel }}}{\gamma_{\text {steel }}} \\
R_{d, \text { concrete }}
\end{array}\right.
$$

The coefficients $\mathrm{k}_{\text {mod }} \mathrm{y}_{\mathrm{M}}$ and $\mathrm{y}_{\text {steel }}$ should be taken according to the current regulations used for the calculation.

- The timber strength values $\mathrm{R}_{1, \mathrm{k} \text { timber }}$ are calculated considering the effective number according to Table 8.1 (EN 1995-1-1)
- The calculation process used a timber characteristic density of $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{C} 25 / 30$ concrete with a thin reinforcing layer and minimum thickness indicated in the relative tables
- Concrete design strength values are supplied for uncracked ($R_{1, \text { d uncracked }}$), cracked ($R_{1, \text { d cracked }}$) concrete and in case of seismic verification ($R_{1, d}$ seismic $)$ for use of chemical anchor with threaded rod in steel class 5.8.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2 elastic design according to EOTA TRO45). For chemical anchors it is assumed that the annular space between the anchor and the plate hole is filled ($a_{\text {gap }}=1$).
- The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge), the anchor-to-concrete group can be verified using MyProject calculation software according to the design requirements.
- Dimensioning and verification of timber and concrete elements must be carried out separately.

[^0]: NOTES:
 ${ }^{(1)}$ For the configuration in the table it is recommended not to install the screws of the lower row at a distance of $\mathrm{a}_{3 . t}$ (stressed end) $=15 \mathrm{~d}=75 \mathrm{~mm}$.

