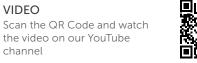
ALUMINI CONCEALED BRACKET WITHOUT HOLES

STEEL-ALUMINUM

EN AW-6060 aluminium alloy bracket obtained by extrusion and therefore weld-free.

SLENDER STRUCTURES

The small dimensions of the side allows to connect secondary beams with limited width (starting from 45 mm).


INCLINED JOINTS

Certified strengths calculated in all directions: vertical, horizontal and axial. They can be used in inclined joints.

CHARACTERISTICS

FOCUS	concealed joints			
TIMBER SECTIONS	from 45 x 70 mm to 140 x 280 mm			
STRENGTH	R _{v,k} up to 36 kN			
FASTENERS	HBS PLATE EVO, SBD, STA, SKS			

MATERIAL

Aluminium alloy three dimensional perforated plate.

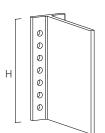
FIELDS OF USE

Timber-to-timber and timber-to-concrete shear joints, both perpendicular and inclined

- solid timber and glulam
- CLT, LVL
- timber based panels

QUICK ASSEMBLING

The fastening, simple and fast, is realized through screws HBS PLATE EVO on the main beam and self-drilling or smooth dowels on the secondary beam.


INVISIBLE

The concealed connection provides a satisfying appearance to the joint and fulfils the fire safety requirements. When adequately protected by timber, it is suitable for outdoor use.

CODES AND DIMENSIONS

ALUMINI

CODE	type	Н	pcs
		[mm]	
ALUMINI65	without holes	65	25
ALUMINI95	without holes	95	25
ALUMINI125	without holes	125	25
ALUMINI155	without holes	155	15
ALUMINI185	without holes	185	15
ALUMINI215	without holes	215	15
ALUMINI2165	without holes	2165	1

L

L

] d,

di 🖂 🖂

HBS PLATE EVO

CODE	d1	L	b	ТХ	pcs
	[mm]	[mm]	[mm]		
HBSPEVO550	5	50	30	TX25	200
HBSPEVO560	5	60	35	TX25	200

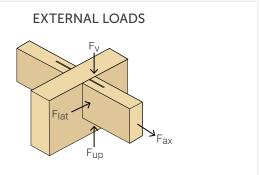
SBD

CODE	d ₁	L	ТХ	pcs
	[mm]	[mm]		
SBD7555	7,5	55	ТХ40	50
SBD7575	7,5	75	ТХ40	50
SBD7595	7,5	95	ТХ40	50

SKS ALUMINI

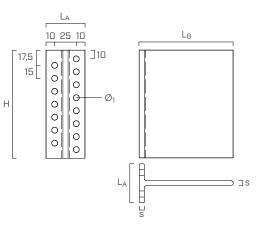
CODE	d1	L	ТХ	pcs
	[mm]	[mm]		
SKSALUMINI660	6	60	ТХ30	100
LONG BIT				
CODE	L	colour	ТХ	pcs
	[mm]			
TX30200	200	purple	ТХ30	100

MATERIAL AND DURABILITY

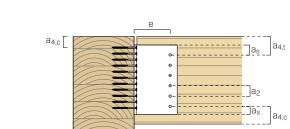

ALUMINI: EN AW-6060 aluminium alloy. To be used in service classes 1 and 2 (EN 1995-1-1).

FIELDS OF USE

- Timber-to-timber, timber-to-concrete and timber-to-steel joints
- Perpendicular and inclined joints

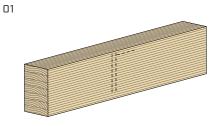

ADDITIONAL PRODUCTS - FASTENING

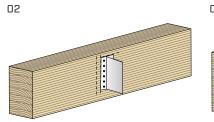
type	description	d	support	page
		[mm]		
HBS PLATE EVO	screw for timber	5	2/111	568
SBD	self-drilling dowel	7,5	27777	48
STA	smooth dowel	8	<i>2)11</i> 11	54

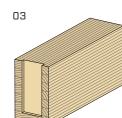

GEOMETRY

ALUMINI			
thickness	S	[mm]	6
wing width	L _A	[mm]	45
web length	L _B	[mm]	109,9
small flange-holes	Ø1	[mm]	7,0

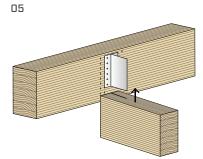
INSTALLATION

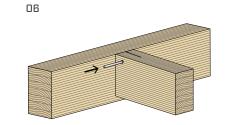

MINIMUM DISTANCES

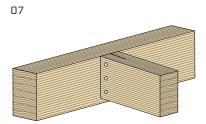


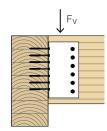

secondary beam-timber		self-drilling dowel	smooth dowel		
				SBD Ø7,5	STA Ø8
dowel-dowel	a ₂	[mm]	≥ 3 d	≥ 23	≥ 24
dowel-top of beam	a _{4,t}	[mm]	≥ 4 d	≥ 30	≥ 32
dowel-bottom of beam	a _{4,c}	[mm]	≥ 3 d	≥ 23	≥ 24
dowel-bracket edge	as	[mm]	\geq 1,2 d ₀ ⁽¹⁾	≥ 10	≥ 12
dowel-main beam	е	[mm]		86	86
⁽¹⁾ Hole diameter.				·	

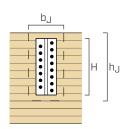
main beam-timber		HBS PLATE EVO Ø5 screw
first connector-top of beam	a_{4,c} [mm] ≥ 5 d	≥ 25


ASSEMBLY









CONCEALED BEAM JOINTS | ALUMINI | 21

STATIC VALUES | TIMBER-TO-TIMBER JOINT | Fv

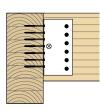
ALUMINI with SBD self-drilling dowels

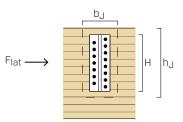
	SECONDARY BEAM			MAIN BEA	AM
ALUMINI H ⁽¹⁾	bյ	hյ	SBD dowels Ø7,5 ⁽²⁾	HBS PLATE EVO screw Ø5 x 60	R _{v,k}
[mm]	[mm]	[mm]	[pcs Ø x L]	[pcs]	[kN]
65	60	90	2 - SBD Ø7,5 x 55	7	2,9
95	60	120	3 - SBD Ø7,5 x 55	11	7,1
125	60	150	4 - SBD Ø7,5 x 55	15	12,9
155	60	180	5 - SBD Ø7,5 x 55	19	19,9
185	60	210	6 - SBD Ø7,5 x 55	23	27,9
215	60	240	7 - SBD Ø7,5 x 55	27	36,5

ALUMINI with STA dowels

	SECONDARY BEAM			MAIN BEA	АM
ALUMINI H ⁽¹⁾	bյ	hյ	STA dowels Ø8 ⁽³⁾	HBS PLATE EVO screw Ø5 x 60	R _{v,k}
[mm]	[mm]	[mm]	[pcs Ø x L]	[pcs]	[kN]
65	60	90	2 - STA Ø8 x 60	7	2,9
95	60	120	3 - STA Ø8 x 60	11	7,1
125	60	150	4 - STA Ø8 x 60	15	12,9
155	60	180	5 - STA Ø8 x 60	19	19,9
185	60	210	6 - STA Ø8 x 60	23	27,9
215	60	240	7 - STA Ø8 x 60	27	35,0

NOTES:

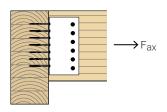

⁽¹⁾ The bracket with height H is available pre-cut (codes on page 20) or can be obtained from the rod ALUMINI2165.

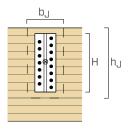

 $^{(2)}$ SBD self-drilling dowels Ø7,5: $M_{y,k}$ = 42000 Nmm.

 $^{(3)}$ STA smooth dowels Ø8: $M_{y,k}$ = 24100 Nmm.

General calculation principles see page 25.

STATIC VALUES | TIMBER-TO-TIMBER JOINT | Flat





ALUMINI with SBD self drilling dowels and STA dowels

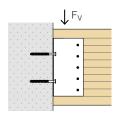
	SECONDAR	RY BEAM ^[1]	MAIN BEAM		
ALUMINI			HBS PLATE EVO screw	R _{lat,k,alu}	R _{lat,k,beam} (2)
Н	bj	hյ	Ø5 x 60	r∿lat,k,alu	Nlat,k,beam
[mm]	[mm]	[mm]	[pcs]	[kN]	[kN]
65	60	90	7	1,6	3,1
95	60	120	11	2,3	4,1
125	60	150	15	3,0	5,1
155	60	180	19	3,8	6,2
185	60	210	23	4,5	7,2
215	60	240	27	5,2	8,2

STATIC VALUES | TIMBER-TO-TIMBER JOINT | Fax

ALUMINI with SBD self-drilling dowels

	SECONDARY BEAM			MAIN BEAM		
ALUMINI			SBD dowels	HBS PLATE EVO screw	D	
Н	bյ	hյ	Ø7,5	Ø5 x 60	R _{ax,k}	
[mm]	[mm]	[mm]	[pcs Ø x L]	[pcs]	[kN]	
65	60	90	2 - SBD Ø7,5 x 55	7	15,5	
95	60	120	3 - SBD Ø7,5 x 55	11	24,3	
125	60	150	4 - SBD Ø7,5 x 55	15	33,2	
155	60	180	5 - SBD Ø7,5 x 55	19	42,0	
185	60	210	6 - SBD Ø7,5 x 55	23	50,8	
215	60	240	7 - SBD Ø7,5 x 55	27	59,7	

NOTES:

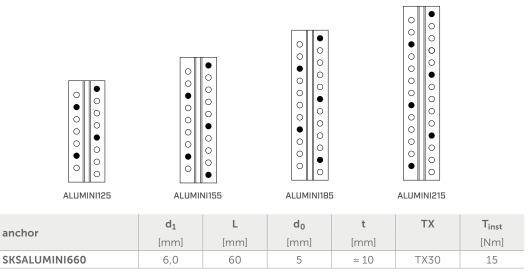

 $^{(1)}$ The strength values are valid for both SBD Ø7,5 self-drilling dowels and STA Ø8 dowels.

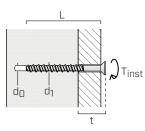
General calculation principles see page 25.

⁽²⁾ Glulam GL24h.

RECOMMENDED STATIC VALUES | TIMBER-TO-CONCRETE JOINT | Fv

SCREW ANCHOR


ALUMINI with SBD self-drilling dowels


		SE	CONDARY BEAM TIMBER		MAIN BEAM UNCRACKED CONCRETE	
ALUMINI		SBD dowels			SKSALUMINI660 anchor ⁽³⁾	
H ⁽¹⁾	bյ	hյ	Ø7,5	R _{v,k timber}	Ø6 x 60	R _{v,d concrete}
[mm]	[mm]	[mm]	[pcs Ø x L]	[kN]	[pcs]	[kN]
125	60	150	3 - SBD Ø7,5 x 55	15,6	4	6,0
155	60	180	3 - SBD Ø7,5 x 55	15,6	5	7,3
185	60	210	4 - SBD Ø7,5 x 55	20,8	5	9,1
215	60	240	5 - SBD Ø7,5 x 55	26,1	6	11,5

ALUMINI with STA dowels

	SECONDARY BEAM TIMBER				MAIN BEAM UNCRACKED CONCRETE	
ALUMINI			STA d	owels	SKSALUMINI660 anchor ⁽³⁾	
H ⁽¹⁾	bյ	hյ	Ø8	R _{v,k timber}	Ø6 x 60	R _{v,d concrete}
[mm]	[mm]	[mm]	[pcs Ø x L]	[kN]	[pcs]	[kN]
125	60	150	3 - STA Ø8 x 60	15,0	4	6,0
155	60	180	3 - STA Ø8 x 60	15,0	5	7,3
185	60	210	4 - STA Ø8 x 60	20,0	5	9,1
215	60	240	5 - STA Ø8 x 60	25,0	6	11,5

ANCHORS INSTALLATION

GENERAL PRINCIPLES:

- Resistance values for the fastening system are valid for the calculation examples shown in the table.
- The calculation process used a timber characteristic density of ρ_k = 385 kg/m³ and C20/25 concrete with a thin reinforcing layer, where edge-distance is not a limiting factor.
- The coefficients k_{mod} and $y_{\rm M}$ should be taken according to the current regulations used for the calculation.
- Dimensioning and verification of timber and concrete elements must be carried out separately.

STATIC VALUES | F_v

TIMBER-TO-TIMBER

 Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-09/0361.

The design values are obtained from the characteristic values as follows: ____ R_k \cdot k_{mod}

$$R_d = \frac{\gamma_R - \gamma_{MOO}}{\gamma_M}$$

- In some cases the connection shear strength $R_{V,k}$ is notably large and may be higher than the secondary beam strength. Particular attention should be paid to the shear check of the reduced timber cross-section in correspondence with the bracket location.

STATIC VALUES | F_{lat} | F_{ax}

TIMBER-TO-TIMBER

 Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-09/0361. The design values are obtained from the characteristic values as follows:

$$R_{lat,d} = \min \begin{cases} \frac{R_{lat,k,alu}}{\gamma_{M,alu}} \\ \frac{R_{lat,k,beam} \cdot k_{mod}}{\gamma_{M,T}} \end{cases}$$
$$R_{ax,d} = \frac{R_{ax,k} \cdot k_{mod}}{\gamma_{M,T}}$$

with $y_{M,T}$ partial coefficient of the timber.

STATIC VALUES | F_{ν}

TIMBER-TO-CONCRETE

 Characteristic values on wood side are consistent with EN 1995-1-1 and in accordance with ETA-09/0361. The strength values of anchors for concrete are recommended design values derived from laboratory data. Fastening on concrete is not CE marked, it is advisable to use the joint system for non-structural applications.

Design resistance values can be obtained from the tabled values as follows:

$$R_{d} = \min \left\{ \begin{array}{c} \frac{R_{k, \ timber} \cdot k_{mod}}{\gamma_{M}} \\ R_{d, \ concrete} \end{array} \right.$$

• Because of the arrangement of the fasteners on concrete, special care should be taken during installation.