## ANGLE BRACKET FOR SHEAR FORCES

## LOW HOLES

Ideal for TIMBER FRAME, designed for fastening on platform beams or on the stringers of the frame structures. It also has certified values for use with partial nailing.

FRAME
Thanks to the lowered position of the holes on the vertical flange, it offers excellent shear strength values even on low height platform beams. $\mathrm{R}_{2, \mathrm{k}}$ up to 42.5 kN on both timber and concrete.

## CONCRETE HOLES

The TITAN angle bracket are designed to offer two fastening possibilities, in order to avoid interference with the rods in the concrete support.


## CHARACTERISTICS

| FOCUS | shear joints |
| :--- | :--- |
| HEIGHT | 71 mm |
| THICKNESS | $3,0 \mathrm{~mm}$ |
| FASTENERS | LBA, LBS, VIN-FIX PRO, EPO-FIX PLUS, SKR, AB1 |



## MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

## FIELDS DF USE

Timber-to-concrete and timber-to-timber shear joints for panels and timber stringers.

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels


## Seejojoytor seelqoution

rothoblaas
CLIMA CONTROL 80 CE EN13994
seelqoutor

## rothoblaas

CLIMACONTROL80 ( $\xi_{\text {ENBSBe }}$

## rothoblaas

CLIMA CONTROL 80 C $\epsilon_{\text {EN } 13984}$
CLIMA CONTROL

SE ?190Y70.


## TIMBER-TO-TIMBER

Ideal for shear joints between floor and wall and between wall and wall. The high shear strength allows to optimize the number of fastenings.

## TITAN SILENT

Ideal in combination with XYLOFON PLATE to limit acoustic bridges and reduce walking vibrations of timber floors.

## CODES AND DIMENSIDNS

TITAN F－TCF｜CONCRETE－TO－TIMBER JOINTS

| CODE | $\mathbf{B}$ | $\mathbf{P}$ | $\mathbf{H}$ | holes | $\mathrm{n}_{\mathrm{v}} \varnothing 5$ | $\mathbf{s}$ | $\ddots$ | pcs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{pcs}]$ | $[\mathrm{mm}]$ | $\ddots$ |  |
| TCF200 | 200 | 103 | 71 | $\varnothing 13$ | 30 | 3 | $\bullet$ | 10 |



TITAN F－TTF｜TIMBER－TO－TIMBER JOINTS

| CODE | $\mathbf{B}$ | $\mathbf{P}$ | $\mathbf{H}$ | $\mathrm{n}_{\mathrm{H}} \varnothing 5$ | $\mathrm{n}_{\mathrm{v}} \varnothing 5$ | $\mathbf{s}$ | リ） | pcs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{pcs}]$ | $[\mathrm{pcs}]$ | $[\mathrm{mm}]$ |  |  |
| TTF200 | 200 | 71 | 71 | 30 | 30 | 3 | $\bullet$ | 10 |



ACOUSTIC PROFILE｜TIMBER－TO－TIMBER JOINTS

| CODE | type | B | P | s | P） | pcs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ |  |  |
| XYL3570200 | xylofon plate | 200 mm | 70 | 6 | $\bullet$ | 10 |
| ALADIN95 | soft | $50 \mathrm{~m}^{(*)}$ | 95 | 5 | $\bullet$ | 10 |
| ALADIN115 | extra soft | $50 \mathrm{~m}^{(*)}$ | 115 | 7 | $\bullet$ | 10 |
| （＊）To be cuton site |  |  |  |  |  |  |


${ }^{(*)}$ To be cut on site

## MATERIAL AND DURABILITY

TITAN F：carbon steel DX51D＋Z275．
To be used in service classes 1 and 2 （EN 1995－1－1）．
XYLOFON PLATE：35－shore polyurethane compound． ALADIN STRIPE：Compact EPDM．

## FIELD OF USE

－Timber－to－concrete joints
－Timber－to－timber joints
－Timber－to－steel joints


## ADDITIONAL PRODUCTS－FASTENING

| type | description |  | d | support | page |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ［mm］ |  |  |
| LBA | Anker nail |  | 4 | 2111 | 548 |
| LBS | screw for plates | （－uvwwwurs | 5 | ए111 | 552 |
| AB1 | mechanical anchor | $\text { q }] \text { [umwnuw [0, }$ | 12 | 㓌安気 | 494 |
| SKR | screw anchor | numumum | 12 |  | 488 |
| VIN－FIX PRO | chemical anchor | $0 \simeq 2$ | M12 | －28 | 511 |
| EPO－FIX PLUS | chemical anchor | $\square$ | M12 | 会安过 | 517 |

TCF200


TTF200


## - INSTALLATION ON CONCRETE

To fix the TITAN TCF200 angle bracket to the concrete, $\mathbf{2}$ anchors must be used, according to one of the following installation modes:

IDEAL INSTALLATION


2 anchors positioned in the INTERNAL HOLES (IN)
(identified by a mark on the product)


ALTERNATIVE INSTALLATION


2 anchors placed in the EXTERNAL HOLES (OUT) (e.g. interaction between the anchor and the concrete support reinforcement)


## - TCF200-TTF200|PARTIAL FASTENING PATTERNS FOR STRESS F²/3

In the presence of design requirements such as $F_{2 / 3}$ stresses of different value or presence of sill or platform beam, it is possible to use partial fastening patterns, depending on the height $\mathrm{H}_{\mathrm{B}}$ of the timber element:

| configuration on timber | $\mathrm{H}_{\mathrm{B}}$ | $\begin{aligned} & \mathbf{n}_{v} \\ & \mathrm{pcs} \end{aligned}$ | fastening diagrams |
| :---: | :---: | :---: | :---: |
| full pattern | $\mathrm{H}_{\mathrm{B}} \geq 90 \mathrm{~mm}$ | 30 |  |
| pattern 3 | $\mathrm{H}_{\mathrm{B}} \geq 80 \mathrm{~mm}$ | 25 |  |


| configuration on timber | $\mathrm{H}_{\mathrm{B}}$ | $\begin{gathered} \mathrm{n}_{\mathrm{v}} \\ {[\mathrm{pcs}]} \end{gathered}$ | fastening diagrams |
| :---: | :---: | :---: | :---: |
| pattern 2 | $\mathrm{H}_{\mathrm{B}} \geq 70 \mathrm{~mm}$ | 15 |  |
| pattern 1 | $\mathrm{H}_{\mathrm{B}} \geq 60 \mathrm{~mm}$ | 10 |  |

## STATIC VALUES | SHEAR JOINT F2/3 | TIMBER-TO-CONCRETE

 TCF200

TIMBERSTRENGTH
TIMBER
CONCRETE

| configuration on timber | holes fastening $\varnothing 5$ |  |  | $\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$ | holes fastening $\emptyset 13$ |  | $\begin{gathered} \mathrm{IN}^{(1)} \\ \mathrm{e}_{\mathrm{y}, \mathrm{IN}} \\ {[\mathrm{~mm}]} \end{gathered}$ | OUT ${ }^{(2)}$ <br> $\mathrm{e}_{\mathrm{y}, \text { out }}$ <br> [mm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | type | $\emptyset x$ L <br> [mm] | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p \mathrm{pcs}]} \end{gathered}$ | $[\mathrm{kN}]$ | $\emptyset$ [mm] | $\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[p \mathrm{~s}]} \end{gathered}$ |  |  |
| - full pattern $\mathrm{H}_{\mathrm{B}} \geq 90 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 30 | 35,5 | M12 | 2 | 38,5 | 70,0 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  | 42,5 |  |  |  |  |
| - pattern 3$H_{B} \geq 80 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 25 | 31,0 |  |  |  |  |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  | 37,2 |  |  |  |  |
| - pattern 2 <br> $\mathrm{H}_{\mathrm{B}} \geq 70 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 15 | 20,9 |  |  |  |  |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  | 25,1 |  |  |  |  |
| - pattern 1$\mathrm{H}_{\mathrm{B}} \geq 60 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 10 | 15,1 |  |  |  |  |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  | 18,1 |  |  |  |  |

## CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

| configuration on concrete | holes fastening $\emptyset 13$ |  | $\mathrm{R}_{2 / 3, \mathrm{~d} \text { concrete }}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | type | $\emptyset \times L$ | $1 \mathrm{~N}^{(1)}$ | OUT ${ }^{(2)}$ |
|  |  | [mm] | [kN] | [kN] |
| - uncracked | VIN-FIX PRO 5.8 | M12 $\times 130$ | 29,7 | 24,4 |
|  | VIN-FIX PRO 8.8 | M12 $\times 130$ | 48,1 | 39,1 |
|  | SKR-E | $12 \times 90$ | 38,3 | 31,3 |
|  | AB1 | M12 $\times 100$ | 35,4 | 28,9 |
| - cracked | VIN-FIX PRO 5.8 | M12 $\times 130$ | 29,7 | 24,4 |
|  | VIN-FIX PRO 8.8 | M12 $\times 130$ | 35,1 | 28,9 |
|  | SKR-E | $12 \times 90$ | 34,6 | 28,4 |
|  | AB1 | M12 $\times 100$ | 35,4 | 28,9 |
| - seismic | EPO-FIX PLUS 5.8/8.8 | M12 $\times 130$ | 19,2 | 15,7 |
|  | SKR-E | $12 \times 90$ | 8,8 | 7,2 |
|  | AB1 | M12 $\times 100$ | 10,6 | 8,7 |


| installation | anchor type |  | $\begin{gathered} \mathbf{t}_{\mathrm{fix}} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathbf{h}_{\mathrm{ef}} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & \mathbf{h}_{\text {nom }} \\ & {[\mathrm{mm}]} \end{aligned}$ | $\begin{gathered} \mathrm{h}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & \mathbf{h}_{\min } \\ & {[\mathrm{mm}]} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | type | $\emptyset \times \mathrm{L}$ [mm] |  |  |  |  |  |  |
| TCF200 | VIN-FIX PRO EPO-FIX PLUS 5.8/8.8 | M12 $\times 130$ | 3 | 112 | 112 | 120 | 14 | 200 |
|  | SKR-E | $12 \times 90$ | 3 | 64 | 87 | 110 | 10 |  |
|  | AB1 | M12 $\times 100$ | 3 | 70 | 80 | 85 | 12 |  |


| $\mathbf{t}_{\text {fix }}$ | fastened plate thickness |
| :--- | :--- |
| $\mathbf{h}_{\text {nom }}$ | nominal anchoring depth |
| $\mathbf{h}_{\text {ef }}$ | effective anchor depth |
| $\mathbf{h}_{1}$ | minimum hole depth |
| $\mathbf{d}_{\mathbf{0}}$ | hole diameter in the concrete support |
| $\mathbf{h}_{\text {min }}$ | concrete minimum thickness |

MGS threaded rod class 8.8 to be cut to size: see page 534

```
NOTES:
(1) Installation of the anchors in the two internal holes (IN).
(2) Installation of the anchors in the two external holes (OUT)
```


## TCF200 | VERIFICATION OF CONCRETE ANCHORS FOR STRESS F2/3

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

Ey calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).

The anchor group must be verified for:
$\begin{aligned} V_{S d, x} & =F_{2 / 3, d} \\ M_{S d, z} & =F_{2 / 3, d} \times e_{y, I N / O U T}\end{aligned}$


## - STATIC VALUES | SHEAR JDINT F4- F5 $-\mathrm{F}_{4 / 5} \mid$ TIMBER-TO-CONCRETE

TCF200

|  | TIMBER |  |  |  | STEEL |  | CONCRETE |  |  |  | F4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{4}$ | type | fastening $\begin{gathered} \emptyset \times \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathbf{n}_{v} \\ {[p c s]} \end{gathered}$ | $\mathrm{R}_{4, \mathrm{k} \text { timber }}$ <br> [kN] | [kN] | $\gamma_{\text {steel }}$ | holes <br> $\emptyset$ <br> [mm] | $\begin{aligned} & \text { tening } \\ & \mathrm{n}_{\mathrm{H}} \\ & \text { [pcs] } \end{aligned}$ | $\mathbf{k}_{\mathrm{t} \perp}$ | $k_{t / /}$ |  |  |
| - full pattern | LBA nails LBS screws | $\varnothing 4,0 \times 60$ $\varnothing 5,0 \times 50$ | 30 | 14,6 | 9,5 | Үмо | M12 | 2 | 0,5 | - |  | $山 \because$ |

The group of 2 anchors must be verified for:
$\mathrm{V}_{\mathrm{Sd}, \mathrm{y}}=2 \times \mathrm{k}_{\mathrm{t} \perp} \times \mathrm{F}_{4, \mathrm{~d}}$

|  | TIMBER |  |  |  | STEEL |  | CONCRETE |  |  |  | $\stackrel{F_{5}}{\leftarrow}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{5}$ | type | es fastening $\emptyset x L$ <br> [mm] | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$ | $\mathrm{R}_{5, \mathrm{k} \text { timber }}$ <br> [kN] | [kN] | $\gamma_{\text {steel }}$ | holes <br> $\emptyset$ [mm] | ening $\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$ | $k_{t \perp}$ | $k_{t / /}$ |  |  |
| - full pattern | LBA nails LBS screws | $\varnothing 4,0 \times 60$ $\varnothing 5,0 \times 50$ | 30 | 10,7 | 4,8 | Үмо | M12 | 2 | 0,5 | 0,27 |  | $\downarrow$ |

The group of 2 anchors must be verified for:
$\mathrm{V}_{\mathrm{Sd}, \mathrm{y}}=2 \times \mathrm{k}_{\mathrm{t} \perp} \times \mathrm{F}_{5, \mathrm{~d}}$
$N_{S d, z}=2 \times k_{t / /} \times F_{5, d}$

|  | TIMBER |  |  |  | STEEL |  | CONCRETE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{4 / 5}$ <br> TWD ANGLE BRACKETS | holes fastening $\varnothing 5$ |  |  | $\mathrm{R}_{4 / 5, \mathrm{k} \text { timber }}$ | $\mathrm{R}_{4 / 5, \mathrm{k} \text { steel }}$ |  | holes fastening |  | $1 \mathrm{~N}^{(1)}$ |  | $\xrightarrow{\text { F4/5 }}$ |  |
|  | type | $\emptyset x \mathrm{~L}$ | $\mathrm{n}_{\mathrm{v}}$ |  |  |  | $\emptyset$ | $\mathrm{n}_{\mathrm{H}}$ | $k_{\text {t } \perp}$ | $k_{t / /}$ |  |  |
|  |  | [mm] | [pcs] | [kN] | [kN] | $\gamma_{\text {steel }}$ | [mm] | [pcs] |  |  |  |  |
| - full pattern | LBA nails | $\varnothing 4,0 \times 60$ | $30+30$ | 23,8 | 12,3 | Үмо | M12 | $2+2$ | 0,31 | 0,10 |  |  |
|  | LBS screws | Ø5,0x50 |  |  |  |  |  |  |  |  |  |  |

The group of 2 anchors must be verified for:
$V_{S d, y}=2 \times k_{t \perp} \times F_{4 / 5, \mathrm{~d}}$
$N_{S d, z}=2 \times k_{t / /} \times F_{4 / 5, d}$

The $F_{4}, F_{5}, F_{4 / 5}$ values in the table are valid for the acting stress calculation eccentricity $e=0$ (timber elements prevented from rotating).

- STATIC VALUES | SHEAR JDINT F2/3| TIMBER-TO-TIMBER TTF200

SHEAR STRENGTH R2/3


TIMBER

| configuration on timber | holes fastening $\square^{5}$ |  |  |  | $\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | type | $\emptyset x$ L <br> [mm] | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$ | $\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$ |  |
| - full pattern $\mathrm{H}_{\mathrm{B}} \geq 90 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 30 | 30 | 35,5 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  | 42,5 |
| - pattern 3 $\mathrm{H}_{\mathrm{B}} \geq 80 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 25 | 25 | 31,0 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  | 37,2 |
| - pattern 2$\mathrm{H}_{\mathrm{B}} \geq 70 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 15 | 15 | 20,9 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  | 25,1 |
| - pattern 1$\mathrm{H}_{\mathrm{B}} \geq 60 \mathrm{~mm}$ | LBA nails | $\varnothing 4,0 \times 60$ | 10 | 10 | 15,1 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  | 18,1 |

## SHEAR STRENGTH R2/3 WITH ACDUSTIC PROFILE



TIMBER

| configuration on timber ${ }^{(1)}$ | holes fastening $\varnothing 5$ |  |  |  |  | $\mathrm{R}_{2 / 3, \mathrm{k} \text { timber }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | type | ØxL <br> [mm] | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$ | $\begin{gathered} \mathbf{n}_{\mathrm{H}} \\ {[\mathrm{pcs}]} \end{gathered}$ | $s$ [mm] |  |
| TTF200 + XYLOFON | LBA nails | $\varnothing 4,0 \times 60$ | 30 | 30 | 6 | 17,2 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  |  | 15,8 |
| TTF200 + ALADIN STRIPE SOFT | LBA nails | $\varnothing 4,0 \times 60$ | 30 | 30 | 5 | 20,0 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  |  | 19,0 |
| TTF200 + ALADIN STRIPE EXTRA SOFT | LBA nails | $\varnothing 4,0 \times 60$ | 30 | 30 | 7 | 19,0 |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  |  | 17,9 |

## NOTES:

[^0]${ }^{(2)}$ Profile thickness: in the case of ALADIN profile, the calculation took into account the reduced thickness of the profile itself, due to the corrugated section and the consequent crushing induced by the nail head during insertion.

- STATIC VALUES | SHEAR JOINT F $4-F_{5}-F_{4 / 5} \mid$ TIMBER-TO-TIMBER


## TTF200

| $\mathrm{F}_{4}$ | TIMBER |  |  |  | STEEL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | holes fastening $\varnothing 5$ |  |  | $\mathrm{R}_{4, \mathrm{k} \text { timber }}$ | $\mathrm{R}_{4, \mathrm{k} \text { steel }}$ |  |
|  | type | $\begin{gathered} \emptyset \times L \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p c s]} \end{gathered}$ |  | [kN] | $\gamma_{\text {steel }}$ |
| - full pattern | LBA nails | $\varnothing 4,0 \times 60$ | $30+30$ | 14,1 | 10,4 | Үмо |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  |  |  |



| $\mathrm{F}_{5}$ | TIMBER |  |  |  | STEEL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | holes fastening $\varnothing 5$ |  |  | $\mathrm{R}_{5, \mathrm{k} \text { timber }}$ <br> [kN] | $\mathrm{R}_{5, \mathrm{k} \text { steel }}$ |  |
|  | type | $\emptyset x L$ <br> [mm] | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[p \mathrm{ps}]} \end{gathered}$ |  | [kN] | $\gamma_{\text {steel }}$ |
| - full pattern | LBA nails | $\varnothing 4,0 \times 60$ | $30+30$ | 10,8 | 4,7 | Ymo |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  |  |  |



|  | TIMBER |  |  |  | STEEL |  | $F_{4 / 5}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{4 / 5}$ | holes fastening $\square^{5}$ |  |  | $\mathrm{R}_{4 / 5, \mathrm{k} \text { timber }}$ | $\mathrm{R}_{4 / 5, \mathrm{k} \text { steel }}$ |  |  |  |  |
| TWO | type | $\emptyset \times \mathrm{L}$ | $\mathrm{n}_{\mathrm{v}}$ |  |  |  |  |  |  |
| ANGLE BRACKETS |  | [mm] | [pcs] | [kN] | [kN] | $\gamma_{\text {steel }}$ |  |  |  |
| - full pattern | LBA nails | $\varnothing 4,0 \times 60$ | $60+60$ | 21,0 | 14,2 | $Y_{\text {MO }}$ |  |  | T |
|  | LBS screws | $\varnothing 5,0 \times 50$ |  |  |  |  |  |  | 1 |

The $F_{4}, F_{5}, F_{4 / 5}$ values in the table are valid for the acting stress calculation eccentricity $e=0$ (timber elements prevented from rotating).

## GENERAL PRINCIPLES:

For the general principles of calculation, see page 226.

## TCF200-TTF200|CONNECTION STIFFNESS FOR STRESS F2/3

## EVALUTATION OF SLIP MODULUS K2/3,ser

- $K_{2 / 3, \text { ser }}$ experimental average value for TITAN joint on C24 CLT (Cross Laminated Timber) panels

| type | fastening type <br> $\varnothing \times L[m m]$ | $\mathbf{n}_{\mathbf{v}}$ <br> $[\mathrm{pcs}]$ | $\mathbf{n}_{\mathrm{H}}$ <br> $[\mathrm{pcs}]$ | $\mathrm{K}_{2 / 3, \text { ser }}$ <br> $[\mathrm{N} / \mathrm{mm}]$ |
| :--- | :---: | :---: | :---: | :---: |
| TCF200 | LBA nails <br> $\varnothing 4,0 \times 60$ | 30 | - | $\mathbf{8 4 7 9}$ |
| TTF200 | LBA nails <br> $\varnothing 4,0 \times 60$ | 30 | 30 | $\mathbf{8 2 1 2}$ |

- $\mathrm{K}_{\text {ser }}$ according to EN 1995-1-1 for timber-to-timber joint nails* GL24h/C24

Nails (without pre-drilling hole)

$$
\frac{\rho_{m}^{1,5} \cdot d^{0,8}}{30}
$$

(EN 1995 § 7.1)

| type | fastening type <br> $\varnothing$ x L [mm] | $\begin{gathered} \mathbf{n}_{\mathbf{v}} \\ {[\mathrm{pcs}]} \end{gathered}$ | $\begin{gathered} \mathbf{K}_{\text {ser }} \\ {[\mathrm{N} / \mathrm{mm}]} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| TCF200 | $\begin{aligned} & \text { LBA nails } \\ & \varnothing 4,0 \times 60 \end{aligned}$ | 30 | 26093 |
| TTF200 | $\begin{aligned} & \text { LBA nails } \\ & \varnothing 4,0 \times 60 \end{aligned}$ | 30 | 26093 |



* For steel-to-timber connections the reference regulation indicates the possibility of doubling the value of
$\mathrm{K}_{\text {ser }}$ listed in the table (7.1 (3)).


## GENERAL PRINCIPLES:

- Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0496. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments (see Chapter 6 ANCORS FOR CONCRETE). The connection design strength values are obtained from the values on the table as follows:

$$
R_{d}=\min \left\{\begin{array}{l}
\frac{R_{k, \text { timber }} \cdot k_{\text {mod }}}{\gamma_{M}} \\
\frac{R_{k, \text { steel }}}{\gamma_{\text {steel }}} \\
R_{d, \text { concrete }}
\end{array}\right.
$$

The coefficients $\mathrm{k}_{\text {mod }}, \mathrm{y}_{\mathrm{M}}$ and $\mathrm{y}_{\text {steel }}$ should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- For the calculation process a timber density $\rho_{k}=350 \mathrm{~kg} / \mathrm{m}^{3}$ has been considered. For higher $\rho_{\mathrm{k}}$ values, the strength on timber side can be converted by the $\mathrm{k}_{\text {dens }}$ value
$k_{\text {dens }}=\left(\frac{\rho_{k}}{350}\right)^{0,5}$ for $350 \mathrm{~kg} / \mathrm{m}^{3} \leq \rho_{k} \leq 420 \mathrm{~kg} / \mathrm{m}^{3}$
$k_{\text {dens }}=\left(\frac{\rho_{k}}{350}\right)^{0,5}$ for LVL with $\rho_{k} \leq 500 \mathrm{~kg} / \mathrm{m}^{3}$
- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled $\left(a_{\text {gap }}=1\right)$.


[^0]:    ${ }^{(1)}$ The TTF200 angle bracket can be installed in combination with different resilient acoustic profiles inserted below the horizontal flange in full pattern configuration. The strength values in the table are given in ETA 11/0496 and calculated according to "Blaß, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively disregarding the stiffness of the profile.

