I TITAN F

ANGLE BRACKET FOR SHEAR FORCES

LOW HOLES

Ideal for TIMBER FRAME, designed for fastening on platform beams or on the stringers of the frame structures. It also has certified values for use with partial nailing.

FRAME

Thanks to the lowered position of the holes on the vertical flange, it offers excellent shear strength values even on low height platform beams. R_{2,k} up to 42.5 kN on both timber and concrete.

CONCRETE HOLES

The TITAN angle bracket are designed to offer two fastening possibilities, in order to avoid interference with the rods in the concrete support.

CHARACTERISTICS

FOCUS	shear joints
HEIGHT	71 mm
THICKNESS	3,0 mm
FASTENERS	LBA, LBS, VIN-FIX PRO, EPO-FIX PLUS, SKR, AB1

MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

FIELDS OF USE

Timber-to-concrete and timber-to-timber shear joints for panels and timber stringers.

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

TIMBER-TO-TIMBER

Ideal for shear joints between floor and wall and between wall and wall. The high shear strength allows to optimize the number of fastenings.

TITAN SILENT

Ideal in combination with XYLOFON PLATE to limit acoustic bridges and reduce walking vibrations of timber floors.

CODES AND DIMENSIONS

TITAN F - TCF | CONCRETE-TO-TIMBER JOINTS

CODE	В	Р	Н	holes	n _v Ø5	s		pcs
	[mm]	[mm]	[mm]	[mm]	[pcs]	[mm]	F . F . F	
TCF200	200	103	71	Ø13	30	3	•	10

TITAN F - TTF | TIMBER-TO-TIMBER JOINTS

CODE	В	Р	Н	n _H Ø5	n _v Ø5	s		pcs
	[mm]	[mm]	[mm]	[pcs]	[pcs]	[mm]		
TTF200	200	71	71	30	30	3	•	10

ACOUSTIC PROFILE | TIMBER-TO-TIMBER JOINTS

CODE	type	В	Р	s		pcs
			[mm]	[mm]		
XYL3570200	xylofon plate	200 mm	70	6	•	10
ALADIN95	soft	50 m ^(*)	95	5	•	10
ALADIN115	extra soft	50 m ^(*)	115	7	•	10

MATERIAL AND DURABILITY

TITAN F: carbon steel DX51D+Z275.

To be used in service classes 1 and 2 (EN 1995-1-1).

XYLOFON PLATE: 35-shore polyurethane compound.

ALADIN STRIPE: Compact EPDM.

FIELD OF USE

- Timber-to-concrete joints
- Timber-to-timber joints
- Timber-to-steel joints

■ ADDITIONAL PRODUCTS - FASTENING

type	description		d	support	page
			[mm]		
LBA	Anker nail		4	27711	548
LBS	screw for plates	(Dannininini.	5		552
AB1	mechanical anchor		12		494
SKR	screw anchor		12		488
VIN-FIX PRO	chemical anchor		M12		511
EPO-FIX PLUS	chemical anchor		M12		517

^(*) To be cut on site

GEOMETRY

INSTALLATION ON CONCRETE

To fix the **TITAN TCF200** angle bracket to the concrete, **2 anchors** must be used, according to one of the following installation modes:

■ TCF200 - TTF200 | PARTIAL FASTENING PATTERNS FOR STRESS F_{2/3}

In the presence of design requirements such as $F_{2/3}$ stresses of different value or presence of sill or platform beam, it is possible to use partial fastening patterns, depending on the height H_B of the timber element:

configuration on timber	H _B	n _v	fastening diagrams
full pattern	H _B ≥ 90 mm	30	29]20
pattern 3	H _B ≥ 80 mm	25	26 80

configuration on timber	H _B	n _v [pcs]	fastening diagrams				
pattern 2	H _B ≥ 70 mm	15	30 10 10 10 10 10 10 10 10 10 10 10 10 10				
pattern 1	H _B ≥ 60 mm	10	27 26 26				

■ STATIC VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-CONCRETE

TCF200

TIMBER STRENGTH

	TIMBER							
configuration		holes fastening Ø5		R _{2/3,k timber}				
on timber	type	ØxL	n _v					
		[mm]	[pcs]	[kN]				
full pattern	LBA nails	Ø4,0 x 60	30	35,5				
$H_B \ge 90 \text{ mm}$	LBS screws	Ø5,0 x 50	30	42,5				
• pattern 3	LBA nails	Ø4,0 x 60	25	31,0				
H _B ≥ 80 mm	LBS screws	Ø5,0 x 50	25	37,2				
• pattern 2	LBA nails	Ø4,0 x 60	15	20,9				
H _B ≥ 70 mm	LBS screws	Ø5,0 x 50	12	25,1				
• pattern 1	LBA nails	Ø4,0 x 60	10	15,1				
H _B ≥ 60 mm	LBS screws	Ø5,0 x 50	10	18,1				

CONCRETE									
holes fast	ening Ø13	IN ⁽¹⁾	OUT ⁽²⁾						
Ø	n _H	e _{y,IN}	e _{y,OUT}						
[mm]	[pcs]	[mm]	[mm]						
M12	2	38.5	70.0						

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

configuration	holes faste	ning Ø13	R _{2/3,d}	concrete
on concrete	type	ØxL IN(1) [mm] [kN] M12 x 130 29,7 M12 x 130 48,1 12 x 90 38,3 M12 x 100 35,4 M12 x 130 29,7 M12 x 130 35,1 12 x 90 34,6 M12 x 100 35,4 M12 x 130 19,2 12 x 90 8,8	IN ⁽¹⁾	OUT ⁽²⁾
		[mm]	[kN]	[kN]
	VIN-FIX PRO 5.8	M12 x 130	29,7	24,4
• uncracked	VIN-FIX PRO 8.8	M12 x 130	48,1	39,1
• uncrackeu	SKR-E	12 x 90	38,3	31,3
	AB1	M12 x 100	35,4	28,9
	VIN-FIX PRO 5.8	M12 x 130	29,7	24,4
• cracked	VIN-FIX PRO 8.8	M12 x 130	35,1	28,9
• Cracked	SKR-E	12 x 90	34,6	28,4
	SKR-E 12 AB1 M12 VIN-FIX PRO 5.8 M12 VIN-FIX PRO 8.8 M12 SKR-E 12 AB1 M12	M12 x 100	35,4	28,9
	EPO-FIX PLUS 5.8/8.8	M12 x 130	19,2	15,7
• seismic	SKR-E	12 x 90	8,8	7,2
	AB1	Ø x L IN(1) OU' [mm] [kN] [kI] M12 x 130 29,7 24 M12 x 130 48,1 39 12 x 90 38,3 31 M12 x 100 35,4 28 M12 x 130 29,7 24 M12 x 130 35,1 28 12 x 90 34,6 28 M12 x 100 35,4 28 M12 x 130 19,2 15 12 x 90 8,8 7,	8,7	

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	ØxL[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
TCF200	VIN-FIX PRO EPO-FIX PLUS 5.8/8.8	M12 x 130	3	112	112	120	14	
	SKR-E	12 x 90	3	64	87	110	10	200
	AB1	M12 x 100	3	70	80	85	12	

Precut INA threaded rod, with nut and washer: see page 520 MGS threaded rod class 8.8 to be cut to size: see page 534

t_{fix} h_{nom} h_{ef} h₁ d₀ h_{min} fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{^{\}left(1\right) }$ Installation of the anchors in the two internal holes (IN).

 $^{^{\}left(2\right) }$ Installation of the anchors in the two external holes (OUT).

■ TCF200 | VERIFICATION OF CONCRETE ANCHORS FOR STRESS F_{2/3}

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

E_V calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).

The anchor group must be verified for:

 $V_{Sd,x} = F_{2/3,d}$

 $M_{Sd,z} = F_{2/3,d} x e_{y,IN/OUT}$

STATIC VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} | TIMBER-TO-CONCRETE

TCF200

	TIMBER				ST	EEL		CONCI	RETE	
	holes fastening Ø5		R _{4,k timber}	R _{4,k steel}		holes fastening		IN	(1)	
F ₄	type	ØxL	n_{ν}				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
f	LBA nails	Ø4,0 x 60	30	14,6	9,5		M12	2	0.5	
full pattern	LBS screws	Ø5,0 x 50	30	14,0	9,5	Үмо	IVIIZ		IN.	_

The group of 2 anchors must be verified for:

 $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4,d}$

	TIMBER			STI	EEL		CONC	RETE		
	holes fastening Ø5 R _{5,1}		R _{5,k timber}	R _{5,k steel}		holes fastening		IN	(1)	
F ₅	type	ØxL	n_{ν}				Ø	n _H	$k_{t\perp}$	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
- full nattorn	LBA nails	Ø4,0 x 60	70	10.7	4.0		M12	2	0,5	0,27
• full pattern	LBS screws	Ø5,0 x 50	30	10,7	4,8	Үмо	IVIIZ		0,5	0,27

The group of 2 anchors must be verified for:

 $V_{Sd,y} = 2 \times k_{t\perp} \times F_{5,d}$

 $N_{Sd,z} = 2 \times k_{t//} \times F_{5,d}$

	TIMBER			STI	EEL		CONCI	RETE			
F _{4/5}	holes fastening Ø5 R4		R _{4/5,k timber}	R _{4/5,k} steel		holes fastening		IN ⁽¹⁾			
TWO ANGLE BRACK-	type	ØxL	n _v				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}	F
ETS		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]			-
- full pattorn	LBA nails	Ø4,0x60	70 + 70	27.0	12.7		M12	2 + 2	0.31	0.10	
• full pattern	Dattern LBS screws Ø5,0x50 30 + 30 23,8 12,3 γ _{MO}	INIT	2 + 2	0,31	0,10						

The group of 2 anchors must be verified for:

 $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4/5,d}$

 $N_{Sd,z} = 2 \times k_{t//} \times F_{4/5,d}$

The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating).

GENERAL PRINCIPLES:

For the general principles of calculation, see page 226.

■ STATIC VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-TIMBER

TTF200

SHEAR STRENGTH R_{2/3}

LIMBER

configuration on timber		holes fastening Ø5					
configuration on this ci	type	ØxL	n _v	n _H			
		[mm]	[pcs]	[pcs]	[kN]		
• full pattern H _B ≥ 90 mm	LBA nails	Ø4,0 x 60	70	70	35,5		
	LBS screws	Ø5,0 x 50	30	30	42,5		
• pattern 3	LBA nails	Ø4,0 x 60	25	25	31,0		
H _B ≥ 80 mm	LBS screws	Ø5,0 x 50			37,2		
• pattern 2 H _B \geq 70 mm	LBA nails	Ø4,0 x 60	1.5	4.5	20,9		
	LBS screws	Ø5,0 x 50	15	15	25,1		
• pattern 1 H _B \geq 60 mm	LBA nails	Ø4,0 x 60	10	10	15,1		
	LBS screws	Ø5,0 x 50	10	10	18,1		

SHEAR STRENGTH R_{2/3} WITH ACOUSTIC PROFILE

т	I N A	\Box	п
	IIVI	п	к

configuration		holes faste	profile ⁽²⁾	R _{2/3,k timber}		
on timber ⁽¹⁾	type	ØxL	n _v	n _H	S	
		[mm]	[pcs]	[pcs]	[mm]	[kN]
TTF200 + XYLOFON	LBA nails	Ø4,0 x 60	30	30	6	17,2
	LBS screws	Ø5,0 x 50	30	30	0	15,8
TTF200 + ALADIN STRIPE SOFT	LBA nails	Ø4,0 x 60	30	30	5	20,0
	LBS screws	Ø5,0 x 50	30	30		19,0
TTF200 + ALADIN STRIPE EXTRA SOFT	LBA nails	Ø4,0 x 60	30	30	7	19,0
	LBS screws	Ø5,0 x 50	30	30	/	17,9

NOTES:

⁽¹⁾ The TTF200 angle bracket can be installed in combination with different resilient acoustic profiles inserted below the horizontal flange in full pattern configuration. The strength values in the table are given in ETA 11/0496 and calculated according to "Blaß, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively disregarding the stiffness of the profile.

⁽²⁾ Profile thickness: in the case of ALADIN profile, the calculation took into account the reduced thickness of the profile itself, due to the corrugated section and the consequent crushing induced by the nail head during insertion.

■ STATIC VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} | TIMBER-TO-TIMBER TTF200

	TIMBER				STEEL		
	holes fastening Ø5			R _{4,k timber}	R _{4,k}	steel	
F ₄	type	ØxL	n _v				
		[mm]	[pcs]	[kN]	[kN]	Ysteel	
full nottorn	LBA nails	Ø4,0 x 60		1.1.1	10.4		
full pattern	LBS screws	Ø5,0 x 50	30 + 30	14,1	10,4	Үмо	

		TIMB	STEEL			
	holes fastening Ø5			R _{5,k timber}	R _{5,k}	steel
F ₅	type	ØxL	n _v			
		[mm]	[pcs]	[kN]	[kN]	Ysteel
- full nattorn	LBA nails	Ø4,0 x 60	30 + 30	10,8	4,7	
• full pattern	LBS screws	Ø5,0 x 50	30 + 30	10,8	4,/	У мо

		TIMB	STEEL			
F _{4/5}	holes fastening Ø5			R _{4/5,k timber}	R _{4/5,}	k steel
TWO ANGLE BRACKETS	type	ØxL [mm]	n _v [pcs]	[kN]	[kN]	Ysteel
full nattorn	LBA nails	Ø4,0 x 60	60.60	24.0	14.2	
• full pattern	LBS screws	Ø5,0 x 50	60+60	21,0	14,2	У мо

The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating).

For the general principles of calculation, see page 226.

TCF200 - TTF200 | CONNECTION STIFFNESS FOR STRESS F_{2/3}

EVALUTATION OF SLIP MODULUS K2/3 ser

• K_{2/3,ser} experimental average value for TITAN joint on C24 CLT (Cross Laminated Timber) panels

type	fastening type	n _v	n _H	K _{2/3,ser}
	Ø x L [mm]	[pcs]	[pcs]	[N/mm]
TCF200	LBA nails Ø4,0 x 60	30	-	8479
TTF200	LBA nails Ø4,0 x 60	30	30	8212

• K_{ser} according to EN 1995-1-1 for timber-to-timber joint nails* GL24h/C24

Nails (without pre-drilling hole) $\frac{\rho_m^{\ 1.5} \cdot d^{0.8}}{30}$ (EN 1995 § 7.1)

type	fastening type Ø x L [mm]	n _v [pcs]	K _{ser} [N/mm]
TCF200	LBA nails Ø4,0 x 60	30	26093
TTF200	LBA nails Ø4,0 x 60	30	26093

^{*} For steel-to-timber connections the reference regulation indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3)).

GENERAL PRINCIPLES:

Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0496. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments (see Chapter 6 ANCORS FOR CONCRETE). The connection design strength values are obtained from the values on the table as follows

$$R_{d} = min \quad \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

The coefficients k_{mod}, γ_M and γ_{steel} should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- For the calculation process a timber density $\rho_k=350~kg/m^3$ has been considered. For higher ρ_k values, the strength on timber side can be converted

by the
$$k_{dens}$$
 value:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \quad for 350 \ kg/m^3 \le \rho_k \le 420 \ kg/m^3$$

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \quad for \ LVL \ with \quad \rho_k \le 500 \ kg/m^3$$

- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled ($\alpha_{gap}=1$).