

Environmental product declaration

In accordance with ISO 14025 and EN15804+A2

Rock tie Pc-Coat®

Owner of the declaration: Pretec Norge AS

Product: Rock tie Pc-Coat®

Declared unit: 1 kg

The Norwegian EPD Foundation

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 013:2021 Part B for Steel and aluminium construction products **Program operator:** The Norwegian EPD Foundation

Declaration number: Ref: NEPD-2704-1407

Registration number: Ref: NEPD-2704-1407

Issue date: 04.10.2023

Valid to: 04.10.2028

EPD Software: LCA.no EPD generator ID: 74950

General information

Product

Rock tie Pc-Coat®

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number:

Ref: NEPD-2704-1407

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 013:2021 Part B for Steel and aluminium construction products

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Rock tie Pc-Coat®

Declared unit with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

1kg Rocktie with PC coat. Ø10mm length 2900mm

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Third party verifier:

Owner of the declaration:

Pretec Norge AS Contact person: Ernad Sarajlija Phone: (+47) 69 10 24 60 e-mail: post@pretec.no

Manufacturer:

Pretec Norge AS Kampenesmosen 3 1739 Borgenhaugen, Norway

Place of production:

Pretec China 1-1 1-1 Danmei Road, Haining City Zhejiang Province, China

Management system:

ISO 14001 and ISO 9001, AAA Sertification AB, sert no 794 - EN 1090-1, AAA Sertification AB, sert no 2296

Organisation no:

NO 980 429 245 MVA

Issue date:

04.10.2023

Valid to: 04.10.2028

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Ernad Sarajlija

Reviewer of company-specific input data and EPD: Lars Rune Aasberg

Approved:

Alexander Borg, Asplan Viak AS (no signature required)

Product

Product description:

Rock ties for securing of loose and unstable rocks

Product specification

Pc-Coat[®] duplex coating. Provides optimum corrosion protection for steel using three different processes

- Hot-dip galvanizing acc to ISO 1461
- Zinc-manganese phosphating
- Powder coating acc to EN 13438

CE marked according to NS EN 1090-1.

Materials	kg	%
Powder coating	0,01	1,16
Metal - Steel	0,96	93,05
Metal - Zinc	0,06	5,79
Total	1,04	
Packaging	kg	%
Packaging - Pallet	0,01	90,91
Packaging - Plastic	0,00	9,09
Total incl. packaging	1,05	

Technical data:

Material: Welded rebar Ø10mm. Grade B500NC acc to 3576-3:2012 Weight: 3,7 kg/pc

Market:

Worldwide

Reference service life, product

Reference service life, building or construction works

LCA: Calculation rules

Declared unit:

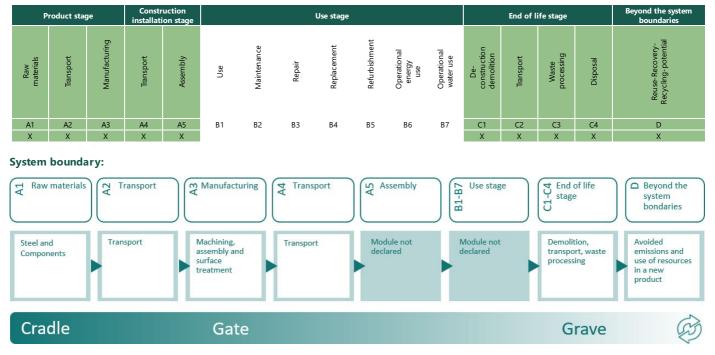
1 kg Rock tie Pc-Coat®

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.


Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Metal - Steel	ecoinvent 3.6	Database	2019
Metal - Zinc	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Powder coating	Ecoinvent 3.6	Database	2019
Packaging - Pallet	Modified ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Coastal Barge (km)	71,0 %	110	0,011	l/tkm	1,21
Ship, Freight, Transoceanic, 194.000DWT (kgkm)	65,0 %	20300		l/tkm	
Truck, over 32 tonnes, EURO 4 (kgkm) - Global	55,0 %	60	0,023	l/tkm	1,38
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	300	0,023	l/tkm	6,90
Assembly (A5)	Unit	Value			
Waste, packaging, pallet, EUR wooden pallet, reusable, average treatment (kg) - A5, inkl. 85 km transp.	kg	0,01			
Waste, packaging, plastic film (LDPE), to average treatment (kg) - A5, inkl. 85 km transp.	kg	0,00			
De-construction demolition (C1)	Unit	Value			
Diesel, burned (MJ)	MJ/DU	0,63			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	300	0,023	l/tkm	6,90
Waste processing (C3)	Unit	Value			
Materials to recycling (kg)	kg	0,70			
Waste treatment per kg Hazardous waste, incineration (kg) - C3	kg	0,01			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Hazardous waste, from incineration (kg) - C4	kg	0,00			
Waste, scrap steel, to landfill (kg)	kg	0,32			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	0,00			
Substitution of primary steel with net scrap (kg)	kg	-0,32			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	0,00			
Substitution of Zinc (kg)	kg	0,05			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	nmental impact									
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	1,90E+00	1,59E-01	1,52E-02	5,73E-02	2,61E-02	2,67E-02	2,38E-03	1,95E-01
P	GWP-fossil	kg CO ₂ -eq	1,90E+00	1,58E-01	9,27E-05	5,73E-02	2,61E-02	2,66E-02	2,38E-03	1,97E-01
P	GWP-biogenic	kg CO ₂ -eq	-9,33E-03	6,08E-05	1,52E-02	1,07E-05	1,12E-05	6,68E-05	1,57E-06	-1,30E-03
P	GWP-luluc	kg CO ₂ -eq	4,01E-03	1,44E-04	9,53E-09	4,52E-06	7,96E-06	6,71E-06	3,68E-07	-3,56E-04
Ò	ODP	kg CFC11 -eq	1,64E-07	2,87E-08	7,00E-12	1,24E-08	6,30E-09	3,05E-09	7,23E-10	-9,33E-08
(F)	AP	mol H+ -eq	9,45E-03	4,03E-03	2,06E-07	6,00E-04	8,41E-05	3,91E-05	1,55E-05	2,22E-04
÷	EP-FreshWater	kg P -eq	8,61E-05	9,93E-07	3,24E-10	2,09E-07	2,08E-07	6,38E-07	2,00E-08	3,90E-06
÷	EP-Marine	kg N -eq	1,94E-03	9,99E-04	1,36E-07	2,65E-04	1,84E-05	8,08E-06	5,59E-06	2,48E-05
	EP-Terrestial	mol N -eq	2,05E-02	1,11E-02	8,47E-07	2,90E-03	2,05E-04	9,10E-05	6,19E-05	-9,20E-05
	РОСР	kg NMVOC -eq	6,51E-03	2,93E-03	2,43E-07	7,98E-04	8,07E-05	2,55E-05	1,77E-05	8,09E-04
" £9	ADP-minerals&metals ¹	kg Sb -eq	4,66E-03	1,94E-06	6,40E-10	8,80E-08	4,66E-07	9,29E-08	1,40E-08	-3,95E-03
A	ADP-fossil ¹	MJ	2,64E+01	2,12E+00	4,85E-04	7,89E-01	4,24E-01	1,12E-01	4,94E-02	6,74E-01
%	WDP ¹	m ³	1,20E+01	8,15E-01	1,40E-03	1,68E-01	3,25E-01	4,13E-01	2,13E-01	-2,39E+01

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Let's connect

Addition	dditional environmental impact indicators									
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	1,51E-07	2,99E-09	3,00E-12	1,59E-08	2,40E-09	6,00E-10	3,03E-10	2,30E-08
(ini) B	IRP ²	kgBq U235 -eq	9,28E-02	9,10E-03	2,05E-06	3,38E-03	1,85E-03	5,08E-04	2,20E-04	-1,81E-02
	ETP-fw ¹	CTUe	4,25E+01	1,42E+00	4,92E-04	4,31E-01	3,10E-01	5,41E-01	3,56E-02	1,15E+01
46.* ****	HTP-c ¹	CTUh	1,16E-08	0,00E+00	0,00E+00	1,70E-11	0,00E+00	2,60E-11	1,00E-12	8,02E-10
45	HTP-nc ¹	CTUh	3,43E-07	3,60E-10	1,00E-12	3,96E-10	3,00E-10	1,56E-10	3,90E-11	-6,22E-08
	SQP ¹	dimensionless	6,33E+00	8,39E-01	6,59E-04	1,00E-01	4,87E-01	4,40E-02	1,76E-01	-8,38E-01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Let's connect

Resource use										
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
î, B	PERE	MJ	1,83E+00	2,18E-02	1,15E-05	4,27E-03	5,34E-03	2,01E-02	1,26E-03	-6,47E-02
- Alexandree - Ale	PERM	MJ	1,39E-01	0,00E+00	-1,39E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
° ≓ 3	PERT	MJ	1,97E+00	2,18E-02	-1,39E-01	4,27E-03	5,34E-03	2,01E-02	1,26E-03	-6,47E-02
Ð	PENRE	MJ	2,64E+01	2,12E+00	4,85E-04	7,89E-01	4,24E-01	1,12E-01	4,94E-02	6,68E-01
.År	PENRM	MJ	4,25E-02	0,00E+00	-4,25E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT	MJ	2,65E+01	2,12E+00	-4,20E-02	7,89E-01	4,24E-01	1,12E-01	4,94E-02	6,68E-01
	SM	kg	9,70E-01	0,00E+00	0,00E+00	3,87E-04	0,00E+00	2,61E-05	1,24E-05	-1,67E-01
2	RSF	MJ	2,85E-02	6,19E-04	3,11E-07	1,05E-04	1,87E-04	4,44E-04	2,45E-05	-2,10E-02
	NRSF	MJ	1,15E-01	-4,19E-03	1,65E-06	1,54E-03	6,26E-04	-2,51E-05	1,43E-04	-3,76E-01
۲	FW	m ³	2,23E-02	1,82E-04	2,88E-07	4,06E-05	4,83E-05	1,03E-04	6,16E-05	-4, 10E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of secondary materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Let's connect

End of life - Was	ste									
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
A	HWD	kg	7,19E-03	1,16E-04	0,00E+00	2,32E-05	2,32E-05	1,21E-05	1,63E-06	-2,87E-04
Ū	NHWD	kg	3,32E-01	4,97E-02	1,50E-03	9,34E-04	3,69E-02	7,48E-03	3,26E-01	1,21E-01
2	RWD	kg	7,17E-05	1,45E-05	0,00E+00	5,48E-06	2,90E-06	3,17E-07	3,17E-07	-1,28E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of I	ife - Outpu	t flow									
	Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	ØD	CRU	kg	0,00E+00	0,00E+00	9,50E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	\$\$D	MFR	kg	1,08E+00	0,00E+00	5,10E-04	3,80E-04	0,00E+00	7,00E-01	1,12E-05	-1,67E-01
	DF	MER	kg	3,19E-03	0,00E+00	4,96E-04	1,18E-06	0,00E+00	6,00E-03	1,95E-07	-1,50E-04
	5D	EEE	MJ	3,38E-03	0,00E+00	3,45E-04	4,04E-06	0,00E+00	1,19E-05	2,43E-06	-1,78E-03
	DI	EET	MJ	5,12E-02	0,00E+00	5,22E-03	6,12E-05	0,00E+00	1,80E-04	3,68E-05	-2,70E-02

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content							
Indicator	Unit	At the factory gate					
Biogenic carbon content in product	kg C	0,00E+00					
Biogenic carbon content in accompanying packaging	kg C	4,13E-03					

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, China, Zhejiang, high voltage (kWh)	ecoinvent 3.6	865,26	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Kun for bruk utendørs

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products									
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	1,77E+00	1,59E-01	1,35E-05	5,67E-02	2,61E-02	2,67E-02	9,92E-04	3,69E-01

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen, (2022) EPD generator for EPD generator for NPCR 013 Part B for Steel and Aluminum, Background information for EPD generator application and LCA data, LCA.no report number: 08.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 013 Part B for Steel and Aluminium Construction Products , Ver. 4.0, 06.10.2021, EPD Norway.

	Program operator and publisher	Phone: +47 23 08 80 00
	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone: (+47) 69 10 24 60
PRETEC	Pretec Norge AS	e-mail: post@pretec.no
Let's connect	Kampenesmosen 3, 1739 Borgenhaugen	web: www.pretec.no
\bigcirc	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6B, 1671	web: www.lca.no
\bigcirc	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
no	Dokka 6B,1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
EPD	ECO Portal	web: ECO Portal